Preliminary investigation of the development of radical technologies after the 2013 review
TECHNOLOGICAL CHANGE
2013–2016

Preliminary investigation:
Development of radical technologies after the review in 2013

(100 Opportunities For Finland And The World,
Publication Of The Committee For The Future 11/2014)

Risto Linturi

PUBLICATION OF THE COMMITTEE FOR THE FUTURE 2/2016
Committee for the Future

FI-00102 Parliament of Finland

www.parliament.fi

Helsinki 2016

ISBN 978-951-53-3617-0 (PDF)

ISSN 2342-6594 (printed)
ISSN 2342-6608 (web)
Contents

Foreword.. 5
1 Introduction, summary of observations and recommendations ... 8
 1.1 A Hundred New Opportunities for Finland: Radical Technological Solutions........ 8
 1.2 Crowdsourcing after the publication of TuVRad9/2013 and acknowledgements 9
 1.3 Objectives of the preliminary investigation .. 11
 1.4 The fastest-progressing baskets in the TuvRad9/2013 Top 25 category 12
 1.5 The fastest-progressing baskets in the TuVRad9/2016 Top 26–100 category .. 13
 1.6 New baskets and fields of technology that are proposed for monitoring 14
 1.7 Structural improvements to the report ... 15
 1.8 Regional and international application of the four-level model ... 16
 1.9 Interactive updating of the report with the help of database ... 17
 1.10 Towards a shared discussion platform in the innovation system 17
2 Development needs related to the structure of value-producing networks................................. 19
3 Development needs related to the four-level model from the perspective of regional development .. 22
4 Development needs related to the four-level model from the perspective of national differences .. 24
5 Opportunities provided by an information system for dynamic production of a report .. 26
6 Views of key stakeholders on development needs .. 28
7 Technological development after the publication of the report A Hundred New Opportunities for Finland .. 31
 7.1 Instrumentalisation (measurement and adjustment) and telecommunications .. 32
 7.2 Artificial intelligence (AI) and algorithmic reasoning ... 46
7.3 Digitalisation of the storage and processing of information 52
7.4 Traffic, mobility and logistics ... 60
7.5 Production of goods and services ... 70
7.6 Material technology ... 76
7.7 Biotechnology and pharmacology ... 85
7.8 Energy technology ... 97
7.9 Digital crowdsourcing platforms and platform companies 111
7.10 Globalising technology component interfaces 116
7.11 Unclassified innovations (2,200) ... 120
7.12 Discussions related to technology news .. 121
8 Appendixes ... 122
Dear reader,

This is a preliminary investigation commissioned by the Finnish Parliament’s Committee for the Future, concerning the further development of the technology anticipation model ‘A Hundred Opportunities for Finland: Radical Technological Solutions’. In this Foreword, I will describe the recommended method of reading this report, whether you are an interested citizen, researcher, entrepreneur looking for new technologies, capital investor, regional developer or representative of media.

In the foreword to the previous publication, I stated that the investigation was unique in Europe, even in the whole world. This was because we were the first to describe a systematic model for rating new technologies. Even though the publication and its English translation received a great deal of attention from the media and many research organizations, no party that addressed the matter objected to my opinion regarding the uniqueness of the study. Thus, it is evidently justified to interpret that my statement is essentially correct.

My unchanged opinion is that our model is one of the best, if not the best, model in the world for technology anticipation; it can predict the speed and probability of the progress of different technology clusters. This observation on the realization of the forecast presented in the previous version of the report is, in fact, the key result of this preliminary investigation. Therefore, a reader in a hurry can skip the first part and go directly to Chapters 1.4 and 1.5. They discuss the above matter and list the technologies that have made the fastest progress in the different baskets, compared with the report of 2013.

Some readers may wonder why Parliament’s Committee for the Future is carrying out such extensive investigation into new technologies of the future. The answer to this question is actually obvious. Anticipation of technology is one of the key duties assigned to the Committee for the Future. Systematic anticipation requires appropriate tools. We resolved this question by developing the four-level model for radical technologies. The four-level model is described briefly in section 1.1. The report A Hundred New Opportunities for Finland includes a more extensive description of the model. Readers not familiar with the subject will get a good overview by reading the foreword to the previous report (TUVJ 6/2013) and its first chapter.

The Parliament, public administration and research institutes benefit greatly from knowing which technologies are the most likely to make fast progress. This enables appropriately front-loaded anticipation of legislation, R&D investments and other control effects. If new technology is to be adopted as part of society, norms must be both dissolved and adjusted. In order to be able to carry out this work systematically, we also need a list
of the various control effects, through which each technology is reviewed in the different areas of life. We will continue this work in the actual report and other publications.

The first part of this report discusses the development of the four-level model. Therefore, readers who need information but have little time can skip to Chapter 7. It provides a comprehensive review of the technological development that has taken place after the publication of the previous report. Chapter 7 constitutes the major part of the investigation, and many will find it the most useful chapter to read. The first part of the preliminary investigation discusses how the grouping of the technologies and the structure of the value-producing networks could be improved.

For readers interested in the development of the four-level model as an instrument for regional development, Chapter 3 includes a discussion of this topic. With regard to regional development, it is essential to note that the evaluation of the importance of technologies should take into account the expertise available in the region, as well as networking in relation to the market external to the region. New technology may provide companies or their customers with considerable competitive edge. Thus, for each technology, the companies in the region that would benefit from that particular new technology should be listed. If companies in the region are quick to adopt new technology, the region’s competitiveness will also improve.

The Committee for the Future is also interested in finding out how different technologies affect different countries/national economies. The members of the European Union alone represent very different types of countries. Therefore, it can be expected that the fast development of some technologies will have very different impacts on different countries. This is because the weights of the value-producing networks affecting society in other countries are different from those of Finland. In Finland, we did not assign weight coefficients to value-producing networks. However, if we want to conduct an extensive comparison between the EU countries, we will need suitable country-specific weight coefficients for value-producing networks. This question is discussed in more detail in Chapter 4.

In addition, the preliminary report includes a sketch for a database application that could be used for updating the technology list and uniting the currently slightly scattered developer communities. From the perspective of society, it would be very advantageous if research institutes, universities, companies, decision-makers, legislators and authorities had easy access to our material. In addition, researchers, developers of technology and those in need of technology could quickly find each other with the help of the information included in the database. Legislators and authorities could detect control effects related to different value-producing networks, as well as needs to change socio-technical operating models and regulations. Decision-makers could see what opportunities and threats a new technology involves for important areas of life. Additional discussion on this matter can be found in Chapter 5.
Overall, I am very satisfied with the completed preliminary report, and I want to express my warmest thanks to Risto Linturi, the author of the report. I also want to thank Osmo Kuusi, Toni Ahlqvist, Olli Hietanen and Ari Näräkkangas for their participation in the steering group.

'There is no time to lose.'

Ville Vähämäki
MP
Chairman, Radical Technologies section
1 Introduction, summary of observations and recommendations

1.1 A Hundred New Opportunities for Finland: Radical Technological Solutions

In autumn 2012, the Committee for the Future started work to develop a method for anticipating the effects of radical technologies on society. As a result of this work, a four-level model of radical technologies, Radical Technology Enquirer, was developed and published in September 2013 in the report A Hundred New Opportunities for Finland: Radical Technological Solutions. This report is referred to in this preliminary investigation using the abbreviation TuVRad9/2013. The publication has been translated and updated and published in 2014 under the name 100 Opportunities for Finland and the World.

The four-level model evaluates the significance of a technological solution from the perspective of twenty different value-producing networks. Value-producing networks aim to cover the added values produced and needed by different actors in society without excessive overlap. Value-producing networks help to detect the potential impact of a technological solution on society as a whole and to detect any needs to change norms.

The four-level model takes into account the technology readiness level and scientific advancements and, through product development investments, the probability of each technology to be launched in the market and become common. The level of Finnish expertise and the existence of export channels are used for evaluating Finland’s opportunities for utilising a technology in the export market.
Using hundreds of sources and crowdsourcing, a list of the hundred most promising technological solutions was compiled for the report. These technological solutions were evaluated using the four-level model developed. The potential of each technology was evaluated separately for each value-producing network by a number of experts. The technologies were ranked in effectiveness order on the basis of the level and probability of their social effectiveness. During the preparation of the report, the monitoring of the advancement of the reported technologies was considered as one of the most important benefits of the method.

After the report was published, it attracted extensive and long-lasting media attention, both in electronic and printed media. Newspaper articles about the report were published more than a year after its publication. The report has been widely referred to in expert lectures and regional development seminars, and it has been in extensive internal use in organisations. Many topics highlighted in the report that were relatively unknown at the time of publication have progressed in the government, even resulting in regulatory changes that open new markets.

Within the framework of the innovation system, the report has been used as a catalyst for regional development and the allocation of investments in technology. Two years after publication, the report is still being referred to and used as a source in investigations and development work. Moreover, the Radical Technology Enquirer tool described in the project has also attracted international interest.

1.2 Crowdsourcing after the publication of TuVRad9/2013 and acknowledgements

In March 2013, a Facebook group was established to support the collection of the radical technologies assessed in the report. It was called 'Committee for the Future's radical technologies crowdsourcing'. By 12 February 2016, a total of 1,660 members had joined the group.

At first, the members of the group had the right to comment the moderator's posts only. The TuVRad9/2013 report lists those members of the group that participated in the commenting and posting of technology news with comments that had an effect on the content of the report. After the publication of the report, the group has grown significantly and is still rapidly expanding. This is a result from the interesting posts and comments in the group. The participants have found the discussion very interesting and they feel that they can have an influence on something that they find important.

After the publication of the TuVRad9/2013 report, members of the group have posted more than a thousand important technology news with reference links. Discussions related to hundreds of news have been lively. Commentators have expanded the perspective by offering their own knowledge and links to online references. This preliminary investigation includes the one thousand references mentioned above. The table that is provided as an appendix to the preliminary investigation includes also the name of the person who posted the reference and a link to the related discussion. References included in this preliminary investigation were posted by 132 different
persons. Several hundred people participated in the discussions and commenting. Most of the members of the group are also active followers.

In practice, moderating a large and active group requires daily contribution. Setting up a voluntary group requires producing a lot of interesting content and promoting discussions. Once the group has attracted a few hundred members, it starts to feed itself. In order for the group to produce high-quality content in addition to discussions, a certain degree of determination is required of the moderator. Nearly all members in the group have adopted and accepted the model in which discussion is encouraged but there is strict control related to the working methods and the structure of the four-level model. Olli Hietanen and Risto Linturi have been the moderators of the group.

The author of the preliminary investigation wants to thank all the crowdsourcers for their excellent work, as well as the Committee for the Future for the assignment and Ville Vähämäki, MP, and Olli Hietala, permanent expert in the Committee for the Future, for their great contribution to the structure of the preliminary investigation as members of the project’s steering group.

The quality, scope and versatility of the content now collected through crowdsourcing are superior to the source material of the TuVRad9/2013 report. The topic-specific discussions opening through the links included in the reference material include very
professional discourse relating to technologies and their commercialisation. The participants have used various search engines to identify essential developments and preconditions.

Despite undeniable advantages, the material produced through crowdsourcing is not gap-free. A follow-up check of the progress of the hundred technologies included in the TuvRad9/2013 report was conducted relating to this preliminary investigation. It revealed some advancements that had gone unnoticed by the group. These have now been added to the group discussions and this preliminary investigation. An analytic approach has also enabled the identification of subject areas that are progressing in a radical manner but the group members have not been following coverage of them. In addition, there are subject areas that increase in importance along with the growing number of users in a way that becomes news only after the matter has become really important. Many crowdsourcing services, for example, are included in this category.

Thus, crowdsourcing that is based on the follow-up and collection of technology news cannot be used as the only analysis method in this type of work that aims for full coverage. The work must be complemented with analytical means and various expert surveys. However, even combined, these two cannot produce as versatile, open-minded and fresh material as crowdsourcing conducted by such a large voluntary group of citizens.

1.3 Objectives of the preliminary investigation

The reception of the TuvRad9/2013 report has been very positive. Nevertheless, for many reasons, further development of the report and the related instrument, the four-level model, is recommended. The Committee for Future’s assignment in 2012 included the idea that, in addition to the evaluation of the importance of technologies, particular attention should be paid to how evaluations change over time. Some of the promising technologies will not progress as anticipated, while others progress very quickly and completely new categories develop. The only means for properly seeing this change is to revise the material of the report and the related evaluation. The preliminary investigation shows that, in many areas, changes are taking place at a very quick pace.

In addition to the revision of the material, there are development needs related to the method itself, so that economic geography is better taken into account. This will facilitate the use of the four-level model for the evaluation of regional opportunities. There is a similar need for the expansion of the systematics if the four-level model is applied in countries in which the economic structure or needs of society are essentially different from the circumstances in Finland. According to the preliminary investigation, the needs related to economic geography can be satisfied with relatively small additions.

The material collected for this preliminary investigation through crowdsourcing is essentially more extensive than the material of the TuVRad9/2013 report. Considering the position that the report has achieved, it can be expected that, in connection with the revision of the report, a considerable amount of additional material will be produced by many interested parties. The management of the material and the preparation and
updating of regional and national versions should be planned carefully. The usability of the report can be considerably improved just by using simple IT applications.

Despite the positive reception of the report, its structuring should be improved. The preliminary investigation pays particular attention to the way of describing the value-producing networks, the grouping of technology baskets and the general effects of the technology domains.

1.4 The fastest-progressing baskets in the TuvRad9/2013 Top 25 category

Nearly all of the hundred technology baskets of the TuvRad9/2013 report have progressed, and there are many that have made substantial progress. Depending on the technology basket, they have progressed through means such as more efficient production methods, better algorithms, more extensive deployment or scientific breakthroughs.

Of the technology baskets included on the Top 25 list of baskets expected to have the greatest impact, eighteen have made significant progress, some of them very rapidly. In this group of technologies with the greatest estimated potential according to the TuVRad9/2013 report, the Top Ten advancers are

- 2.01 Routine and complete DNA sequencing ++++
- 2.02 Biochips or biosensors able to diagnose cheaply and rapidly diseases, physiological states and genetic features of organisms ++++ !
- 2.07 Continuously monitored personal health ++++
- 2.13 Freely organising remote work and organisations that form on the internet ++++
- 2.22 Augmented reality glasses +++
- 2.32 Real-time 3D modelling of the environment ++++
- 2.40 Material radar ++++
- 2.45 Self-driving car ++++
- 2.56 3D printing of goods ++++
- 2.82 Rapidly cheapening solar energy +++

DNA sequencing has progressed very quickly at the levels of science, technology and markets. Biochips that detect diseases have been launched in larger markets from the laboratory, and they are progressing quickly. Devices for continuous monitoring of personal health have become more versatile, and new products are continuously launched in the market. The category Freely organising remote work and organisations that form on the internet has evolved from a difficultly identified phenomenon to a hot topic of work-related discussion through global platform companies, such as the Uber taxi service. Augmented reality glasses are on the threshold of a very broad market breakthrough. Real-time 3D modelling of the environment is already reality for high-end vacuum cleaners; new applications and environment-sensing devices are continuously launched in the market. The self-driving car, once an experiment that was unconvincing even to many experts, has become a unanimous target for the car industry. Self-driving cars are already being tested in traffic globally. 3D printing of goods continues its nearly 100% annual market growth, and the equipment technology is developing at an accelerated rate. In many countries, the price of solar energy has reached parity with the grid. Solar energy production is rapidly increasing, and many breakthroughs in research predict that the
strong fluctuation in production that is transforming the electricity market will continue, as well as the decreasing price trend.

After the publication of the TuvRad9/2013 report, the Top25 group of the four-level model developed much more rapidly on average compared with the categories whose potential importance was estimated to be lower. The top category alone included as many quickly progressing technologies as all the other categories put together. This can be considered as a remarkable success in respect of the four-level model. In addition to potential effectiveness, it seems that the model also predicts the development speed. This, in a way, is not a surprise: the model takes into account the quantity of development investments and the technology readiness level, as well as its potential benefit for the different value-producing networks. However, the result is neither obvious nor trivial.

The technologies ranked in the top quarter in the four-level model progressed more quickly during the review period than those ranked in the second quarter. In addition, the difference between the second quarter and the third and fourth quarters was also distinct. Thus, the explaining factor is probably the extent of the potential benefit associated with the top-ranking technologies in independent value-producing networks. Even if progress in a value-producing network was blocked by power structures, there is a number of alternative routes available. On the other hand, investments in development increase along with the promises. From the perspective of the four-level model, the result means that the technology baskets ranking highest in the model are the most likely to make progress. From the perspective of anticipation, this is a very important achievement.

Technology baskets 1–25	rate of progress 3.64
Technology baskets 26–50	rate of progress 3.36
Technology baskets 51–75	rate of progress 3.00
Technology baskets 76–100	rate of progress 2.76

The above figures describe the average rate of progress by category. The categorisation is the same that was used in TuVRad9/2013, influenced by Finnish expertise and export channels. When these influences are eliminated and a global ranking is applied, the difference between the top and bottom quarters increases slightly, while the difference between the second and third quarters becomes slightly narrower.

1.5 The fastest-progressing baskets in the TuVRad9/2016 Top 26–100 category

Many of the technologies placed in the next three categories in the four-level model on the basis of their estimated effectiveness are making rapid progress, even though, on average, the progress seems to correlate strongly with the significance estimated by the four-level model. The fast-progressing technologies with lower overall effectiveness include many that may have quite a dramatic impact on individual value networks.

2.04 Drugs based on genetically modified organisms ++++
2.06 Longer life time and slower aging processes ++++
2.10 Repairing and regrowing of human organs, (stem) cell cultivation ++++

13
Genetics-based medicines are developed on a continuous basis, and related breakthrough results are frequently reported. Studies to prolong life conducted in mice have led to a number of breakthroughs, and the first tests in humans have started. Cell cultivation, as well as 3D printing and re-growth of organs are already reality for several organs. Human recognition on the basis of an image produced from DNA is a significant breakthrough. Image recognition has also progressed rapidly, and the machine has already surpassed humans in this area. Sensors for hazardous or harmful gases are planned to be included in clothes, for example. Quadcopters are already performing many tasks, and legislation is being adjusted globally. A vactrain test track is being built in California, and the travel speed is estimated at 1,200 km/h. Three years ago, this specific Hyperloop technology had not yet been introduced even as an idea. Experiments in 3D printing of buildings have progressed to include insulated structures that meet the building regulations. Several materials for structures have been developed that are more lightweight than before. As a result of the need created by the use of renewable energy sources, massive storage of energy has become a rapidly growing field, and anticipated new technologies will soon be introduced in the market.

1.6 New baskets and fields of technology that are proposed for monitoring

Many of the technology baskets included in TuVRad9/2013 have expanded too much, and this preliminary investigation includes proposals to split them. In some technology baskets, the collected monitoring material has indicated problematic limitations and need for merging. This issue is also addressed here. Some of the technology baskets have been proposed to be removed, either because they are progressing slowly or because the technology is estimated to have already made its main breakthrough in the market. These proposals are included in chapter 7 in connection with the respective technology basket.

On the basis of the material collected by crowdsourcing, the following new categories and specific collections of breakthrough news are proposed for consideration when preparing the new report.

(new) Urban multilayer cultivation/LED cultivation (2.101)
(new) Inexpensive small fuel cell (2.102)
(new) New power sources for vehicles (2.103)
(new) Radical development of water-borne traffic (2.104)
(new) CO2 capture (2.105)
(new) New methods for transferring goods/materials (2.106)
(new) Robotic manufacturing/service (2.107)
(new) Ubique environment (IOT) (2.108)
(new) Off Grid and Micro Grid solutions (2.110)
(new) MyData (2.111)
(new) Blockchain and other p2p solutions (2.112)
Indoor cultivation using LED lighting is rapidly increasing. The optimisation of light, watering and temperature provides an opportunity for efficient cultivation in urban environments. Robotic manufacturing is stepping out of factories and becoming part of trade and services. The development of the IOT is making the environment increasingly smart and interactive. New decentralised electricity production and storage methods will make withdrawal from the grid a sensible option for many. The blockchain mechanism, which the Bitcoin system is built on, provides a decentralised web of trust for increasing types of transactions. Communicative robots that are capable of verbal functions are becoming increasingly common in information networks and also physical situations. The development of digital technology provides new opportunities for art and new interfaces for media. The development of optics for various new applications is rapid, as a result of the progress of material technology and quantum optics. Artificial intelligence is progressing towards more and more important applications. Many breakthroughs are seen in the fields of medicine and material technology. These, and other unclassified breakthroughs, should be categorised in more detail, and the most promising distinct technologies should be included within the hundred technology baskets.

The proposed new categories, including their reference material and news links, are described in chapter 7 in connection with the description of the progress, proposals and reference material related to the technology baskets included in the TuVRad9/2013 report.

1.7 Structural improvements to the report

The initial categorisation of the technologies in the report was made on journalistic grounds. The technology baskets in a category have some similarities, but more related to the structure or idea than the effects. Further improvement of the categorisation can help to highlight the differences in the social effectiveness of different technologies. This philosophy has been applied in the recent Sitra report Technology as an Enabler to Sustainable Well-being, which uses TuVRad9/2013 as its main source of technology. This option for development does not, as such, affect the basic structure of the anticipation method, but it adds depth to the structuring.

Guided by this philosophy, the technology baskets are divided into ten groups in chapter 7. The division is different from that used in the TuVRad9/2013 report. The purpose of the new grouping is to be able to clearly describe the technology push of each category. Therefore, the idea was to group together technologies that have a number of similar general-level effects. In the final report, these group-specific similar effects should be systematically reflected against the dynamics of value-producing networks and general dynamics of economy and society.
The central part of the anticipation instrument consists of the matrix of twenty value-producing networks used for the evaluation of the hundred technology baskets. The headlining and description technique of the value-producing networks should be improved. For understandable reasons, some readers have found the headings of the value-producing networks in the TuVRad9/2013 report misleading, and the descriptions prepared of them do not adequately facilitate the rating of technologies. Therefore, the rating depends too much on the evaluator’s personal ability to understand and remember the potential of each technology when making evaluations. More systematical description of value-producing networks can essentially reduce the dependence on person.

In the description of value-producing networks, particular attention should be paid to the dynamics of the networks. Threats, opportunities and inertial forces should be separated into independent items and structured more clearly. Inertial forces should be systematically addressed, for example, through the concepts of the socio-technical regime described in more detail in chapter 2. This would also provide a clear perspective to the objectives of public administration to promote desirable developments and mitigate threats. The concepts of the socio-technical regime in connection with value-producing networks would provide an excellent instrument for the breaking of norms and the assessment of the need for new norms.

1.8 Regional and international application of the four-level model

The four-level model and related material provide many opportunities for regional use. Regional developers in Finland have already expressed great interest in the report, and many events have been arranged around Finland on the basis of the material included in the report. Instead of national competencies and export channels, the application of the four-level model in evaluation could be based on the data of each region. The basic material would remain the same, and regional data could easily be fed into the system at a much more detailed level than national data. The regional model constitutes an excellent platform for forming networks within the region and with other regions, between science,
technological development, regional development, exporters, customer organisations and the regulator. This topic will be discussed in more detail in chapter 3.

TuVRad9/2013 has been translated into English, and it has attracted the interest of the European Commission and other international parties. International use of the four-level model would become easier if the weights of the value-producing networks could be modified. This is necessary if the economic structure or any other structure of society is essentially different from that of a country like Finland. Technically, the modification of the weights is a small job. Weights can be chosen in a number of ways. This topic is addressed in more detail in chapter 4.

1.9 Interactive updating of the report with the help of database

The TuVRad9/2013 report was prepared using a text processing software and an Excel table. Updating of a report compiled in this way requires a lot of manual work. For the purposes of this preliminary investigation, all material of technology news and crowdsourced discussions have been transferred into a database that can be easily viewed from different perspectives. This procedure should be developed further. If the structure of the report was programmed as an application accessible through a browser, it would be easy to produce an up-to-date version of the report anytime. The evaluations of regional needs required by the four-level model would also be easy to update, and a regional or even organisation-specific version of the report would be automatically available.

With a relatively simple application, it would be possible to enter in the database information about experts representing Finnish scientific communities and R&D organisations in the various technology baskets, in addition to entering information about technological breakthroughs. Moreover, it would be possible to enter information about parties in need of technology, as well as information about applications and export channels. This would enable reviewing the technology baskets and related news by value-producing network, branch of science and expert. At the same time, it would become possible to browse the database, proceeding from a team of researchers through technology baskets to potential benefits and winners in the different value-producing networks. These possibilities are described in more detail in chapter 5, and Appendix 1 includes a draft of the required database structure.

1.10 Towards a shared discussion platform in the innovation system

The Finnish innovation system has been called one of the best in the world. The figure below shows a model of one of our good innovation processes. The above database and the application that is based on the four-level model and shared by the actors in the innovation system would provide an excellent tool for facilitating all the anticipation and activation sections in the innovation system process. Preliminary discussions on this considerable advantage have been conducted with the key actors in the innovation system. Hopefully, the parties involved will find that a joint data structure is possible and provides useful added value for all Finnish actors. According to a preliminary survey, the
key parties of the innovation systems are interested in this. The survey conducted on the parties of the innovation system is described in more detail in chapter 6.

Figure: Anticipation and activation in project business, Juha Ekberg, Gordionpro Oy
2 Development needs related to the structure of value-producing networks

The concept of value-producing networks is one of the key ideas of the TuVRad9/2013 report and the developed four-level model of radical technologies. Because of value-producing networks, the four-level model highlights rising technologies that can change existing structures and, possibly, challenge the regulative environment on a broad front.

The grouping of value-producing networks can be considered as successful and reflective of the priorities of society. However, the headlining in accordance with the most important area of change has led to misunderstandings regarding the role of value-producing networks in the evaluation of technologies. In the description, the dynamics of the networks, the networks' sensitivity to reform and technological development have not been properly distinguished from each other. In the four-level model, value-producing networks have a ‘demand pull’ role, while a ‘technology push’ approach is applied to the evaluated technologies. The merit of the four-level model lies in fitting these perspectives together. This thinking can be clarified without losing the interesting character of the text.

It is recommended to split the headings of the value-producing networks in two: the main heading describes the scope of the value network using the demand-pull approach, while the subheading indicates the greatest sensitivity to change. The value networks should still be described briefly but more systematically than in the previous report. The current functional dynamics and scope, as well as the costs and satisfied needs should be clearly specified. The descriptions should still focus on characterising the threats and opportunities associated with technological development in relation to satisfying the needs related to the network and the network's dynamics and sensitivity to change. Thus, threats and opportunities should be described separately. They should be clearly linked to the structures of the current, existing value-producing network and, on the other hand, to the key added values produced by and expected from the network.

Modelling of the structure of the value-producing networks and the added values produced by them could facilitate the evaluation of the significance of the technologies and reduce dependence on the evaluator. However, fully automatic evaluation is not possible. At best, the model would make the evaluator’s work easier. Extensive modelling may also involve a challenging amount of work.

It would be useful if descriptions of inertial forces and the current dynamics and sensitivity of the value-producing networks relied on the concept of socio-technical regime, insofar as prevailing structures can be identified in each independent value-producing network. Professor Frank W. Geels has defined the following seven dimensions for socio-technical regimes: technology; user practices and application domains; symbolic meanings of technology; infrastructures; industry structure; regulatory environment; and technical-scientific knowledge. The socio-technical regime must often change thoroughly, particularly prior to radical technological changes, so that the market mechanism can promote the changes.
In many areas, particularly in an oligopoly, large companies want to keep the situation unchanged for as long as possible. Economy of scale and customer knowledge often help them to keep smaller newcomers in the market at a distance, even if the latter possess better technology. Despite this, change can be promoted in many ways. Many instruments of attention economy, for example, are in the government’s hands. New technology can be favoured in public procurement. Regulations limiting or blocking its use can be revoked. Regulative obstacles blocking smaller players can be removed, for example, by opening up public procurement with the help of open interfaces. Training in new technology and other related services can be increased. Practices and ecosystem-catalysing platforms and functional roles related to new technology can be developed.
The inclusion of the concepts of the socio-technical regime in the description of value-producing networks would help to evaluate the adoption rate of new technologies and also the administrative measures required to promote desirable technological changes. When reviewed in this way, value-producing networks and the four-level model as a whole would constitute a very efficient tool for analysing the need to break norms and the need for other measures required by the new technologies.

The coverage of the value-producing networks and their sufficient degree of separation should be checked and ensured when preparing their descriptions. Particular attention should be paid to the demand-pull approach, ensuring that the subject area can be sufficiently clearly described as a network that produces specific type of added value. The following new main headings are initially suggested for the value-producing networks; they follow the current classification but have a wider scope:

<table>
<thead>
<tr>
<th>Value-producing networks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Passenger traffic</td>
</tr>
<tr>
<td>2 Freight traffic</td>
</tr>
<tr>
<td>3 Manufacturing of goods</td>
</tr>
<tr>
<td>4 Trade and services</td>
</tr>
<tr>
<td>5 Nutrition</td>
</tr>
<tr>
<td>6 Remote control and influence</td>
</tr>
<tr>
<td>7 Learning and need for competence</td>
</tr>
<tr>
<td>8 Maintenance of health</td>
</tr>
<tr>
<td>9 Restoration of the ability to function</td>
</tr>
<tr>
<td>10 Improvement of awareness</td>
</tr>
<tr>
<td>11 Material technology</td>
</tr>
<tr>
<td>12 Functionality of goods</td>
</tr>
<tr>
<td>13 Energy production and transfer</td>
</tr>
<tr>
<td>14 Availability of raw materials</td>
</tr>
<tr>
<td>15 Cultural interaction</td>
</tr>
<tr>
<td>16 Safety, security & protection</td>
</tr>
<tr>
<td>17 Built environment</td>
</tr>
<tr>
<td>18 Self-organisation ability</td>
</tr>
<tr>
<td>19 The individual’s role and identity</td>
</tr>
<tr>
<td>20 Democracy and freedom</td>
</tr>
</tbody>
</table>
The four-level model published in the report *A Hundred New Opportunities for Finland* evaluated the social significance of technologies by focusing on three specific matters. The potential utility value of a technology for a society like Finland can be surveyed using twenty value-producing networks. The readiness level of the technology and scientific investments indicate the technology’s probable degree of success. Domestic expertise and networking with the global market indicate the probability at which Finland can benefit from the technology.

Figure: Centres for Economic Development, Transport and the Environment and regions
From the perspective of regional development, Finland is too large an area to be reviewed. Instead of evaluating Finland as a whole, the evaluation of the importance of technologies should focus on regional expertise and the region's networking with the market external to the region, including the domestic market.

The method should be applied to regional development so that instead of national-level evaluation, those experts in the region are listed whose products or services would gain significant competitive advantage from each technology, as well as those companies whose client base would gain a significant competitive advantage from the technology. The highlighting of these areas demonstrates the region's ability to benefit from each technology, both as a user and a provider of products and services related to the technology.

The observation of regional development needs does not principally require any changes to the common sections of the model. The replacement of Finland's data with regional data basically requires collecting data from the region and substituting them for the national data. There is no need to change the structures of the model.

If the regional development aspect was implemented at a detailed level, listing all the parties that particularly benefit from each technology as a user or provider, the system would also provide a good means for creating networks. In order to accelerate the development of reformation-oriented networks, the required information must be easily accessible for browsing by companies and other organisations in the region, and real-time online updating must be enabled.

The production of a regional report should be appropriately automated. The changing of shared data should not automatically lead to a need to rework the regional versions. Regional information that promotes networking should also be available for interregional and national networking. As regards wide-ranging application of the model, the most fruitful and efficient results can be achieved if the information from the national and regional reports alike are entered into a joint database. Then, according to the selections made, an automatically modified national, regional or even organisation-specifically filtered and prioritised version can be produced.
4 Development needs related to the four-level model from the perspective of national differences

A Hundred New Opportunities for Finland was written from the perspective of a society that is similar to Finland. The 20 value-producing networks of the four-level model have an equal weight in the evaluation of the overall significance of the technology baskets. This solution was chosen for two reasons. When the value-producing networks were being outlined, the largest entities were split into smaller ones. The result was twenty value-producing networks, all of which could be considered as important and extensive entities that affect society. The rating within each value-producing network depended on the overall impact on society through the network in question. This was believed to automatically adjust the weights, so that there was no need for network-specific weighting.

Figure: A global view does not reveal differences in culture and economy

For a country that resembles Finland, such as most of the Western countries, the four-level model and the actual content of the report only require the same modifications that are required for regional models. National competencies and access to international networks must be produced country-specifically. If the structure of the society being reviewed essentially differs from the Finnish structure, the situation is different. For example, if the country in question is very agriculture-dominated, the weights of the value-producing networks should be adjusted. This is very easy to take into account in the model. The score produced by each one of the value-producing networks is multiplied with a weight coefficient, and the resulting values are summed up.
This adjustment is technically simple, but the evaluation of the weights is not quite so straightforward. A panel of experts representing different sectors of society can produce the weights using the Delfoi method. Another possible approach is to study the key ratios of national economies to find more schematic and objective methods for determining the weights. This would be suitable for EU-type reviewing, for example, in order to make the prerequisites of countries and their potential benefits comparable with each other.

Key ratios affecting the weight coefficients could be associated with the following matters, for example: level of education; proportion of agriculture; proportion of industry; proportion of military expenditure; proportion of export; proportion of transport; population's age structure; variation in temperature and amount of light according to season; level of raw material resources; national income; differences in income; cultural diversity; form of government.

The next version of the report could test the mutual importance of the value-producing networks in Finland, using the Delfoi method. Moreover, a model could be developed for the mutual importance of the value-producing networks, providing justifications for the weights of the networks. This would improve the reliability of the four-level model in national use by increasing its credibility. This would also be a step towards international application of the model.
5 Opportunities provided by an information system for dynamic production of a report

The four-level model of radical technologies links together scientific advancement, technological development, value-producing networks in society, as well as domestic market demand, expertise and export channels. Even though the original purpose of the four-level model was the anticipation of the social effects of technologies, the material needed for assessment and the links required by the four-level model provide extensive opportunities for responding to many other challenges as well.

The material linked to the model can help decision-makers to detect threats and opportunities created by emerging technologies in their important value-producing networks. With the help of the readiness level of technologies and alternative paths of development, it is possible to create a picture of how realistic the effects are and when they will manifest.

Researchers can use the model for identifying the technology baskets that their field of research can affect. In addition, they can assess what types of applications their respective fields of research could contribute to in the different value-producing networks of society. This helps to anticipate the social effectiveness of research. Researchers, developers of technology and those in need of technology could find each other with the help of the information linked to the four-level model.

Legislators and authorities could use the model to detect needs for change in the socio-technical regimes related to the different value-producing networks. The anticipation
material provided by the four-level model facilitates the revoking or amending of regulations, the analysis of the need for education and the analysis of future risks associated with large investments in infrastructure.

In order to ensure that the four-level model responds to these challenges as efficiently as possible, the material should be easily available for processing in the information network. It should be possible to approach the material from different perspectives. It should be possible for actors interested in a particular value-producing network to view only those technology baskets that are related to this network. Similarly, it should be possible to select for viewing only those technology baskets that require expertise in a specific branch of science. It should be possible to easily produce technology basket-specific views into the applications of different value-producing networks, the technology news related to each technology basket and the related discussions, as well as domestic experts, possible parties who need technology and experts in background disciplines.

A broader export and expert view can easily be linked to an information system built in this way. This can be done, for example, in co-operation with the Academy of Finland, Tekes – the Finnish Funding Agency for Innovation, the Sitra fund, VTT Technical Research Centre of Finland, TEK and Finpro. This would provide each party in the innovation system with a channel that links their field of expertise in a natural way to the other parties’ fields of expertise in the innovation system.

Preliminary functional description

Only the shared parts of the information system and the parts that are necessary to enable the automatic and real-time update of the report ‘A hundred New Opportunities for Finland’ are described here, as well as the parts that are necessary in order to produce regional and national versions as described above.

![Figure: Draft of the online implementation of the Four-Level Model, Jari Kotola, Sovelto](image)
The system must run on a web browser. The system must provide all users with the opportunity to browse technology news and view the relations between the technology baskets, value-producing networks and export channels using different selection criteria. For authenticated users, the system must allow the addition of technology news; for area administrators, the maintenance of organisational information; for organisations, the maintenance of their own information; and for system administrators, the maintenance and addition of all relations and contents. The system should be implemented in accordance with the principles of open data and with open interfaces. Appendix 1 includes the preliminary description of the data content of the database.
6 Views of key stakeholders on development needs

The following enquiry was sent to six actors in the Finnish innovation system:

ENQUIRY CONCERNING THE FURTHER DEVELOPMENT OF THE REPORT ‘A HUNDRED NEW OPPORTUNITIES FOR FINLAND’, COMPILED BY THE COMMITTEE FOR THE FUTURE AND RELATED TO ANTICIPATION OF TECHNOLOGICAL BREAKTHROUGHS

Dear recipient,

The Finnish Parliament’s Committee for the Future has given me the assignment to survey the needs for further development of the anticipation instrument launched by the Parliament. Crowdsourcing related to the report has identified nearly a thousand post-publication (9/2013) technological breakthroughs of various levels. Therefore, a need has arisen to ensure up-to-date availability of information concerning technological breakthroughs and related domestic competencies to anticipators in the form of a shared database. In addition, there is a need to equip the anticipation instrument with features that support regional development and observe specific national features at European level. A further objective of the revision of the original technology anticipation method and the report is to detect the progress of radical technologies and their impact on society. This is best achieved by revising the work at regular intervals. In connection with this revision, the value-producing networks related to the anticipation methods are described more clearly and the grouping of the technologies is improved, while new observations give rise to the renewal of the list of 100 radical technologies and the re-evaluation of their impact on society.

Therefore, we kindly ask you to answer the following questions on behalf of your organisation or to forward this enquiry to a person who could do it.

Is your organisation interested in providing material that could influence the content of the report?

If this work resulted in the specification, assembly and classification of a database for radical technology-related innovations and related Finnish competence, updated on a continuous basis through crowdsourcing, would your organisation be interested in using it?

Could your organisation consider participating in the funding of the user interface for the above database, together with other actors? The original report was already prepared in a structured format that is suitable for a database. The material will be collected into a database in connection with this preliminary investigation. The objective is to establish a cloud service, in which regional and topic-specific information could be easily found and the effectiveness of reported technologies and their links to experts, regions and value-producing networks could be easily detected using various criteria.

Does your organisation have any preferences on the development of the report and the incorporated anticipation model, relating to the technologies included in the report, the value-producing networks, the regional perspective, the mode of presentation or any other important questions related to the anticipation of radical technologies?
I kindly ask you to send your organisation’s answers to these questions by the end of January. Links to the Finnish and English versions of the report:

Yours sincerely,

Risto Linturi

The enquiry was sent to the following organisations: The Council of Oulu Region, the Sitra fund, the Academy of Finland, TEKES – the Finnish Funding Agency for Innovation, Academic Engineers and Architects in Finland TEK and VTT Technical Research Centre of Finland. All of them answered the questions in writing. The length and degree of formality varied, and the answers to most of the questions were cautiously positive. The caution was associated with the fact that the questions did not include any actual proposal or action plan.

Without exception, the actors were ready to acknowledge the positive opportunities provided by co-operation. The inclusion of the organisation’s own data in a shared data structure was considered as useful, and most of the organisations found that the opportunity to use the data is valuable. Most of the organisations considered the funding of the database development possible, but several actors warned about the dangers of scattered and separate systems. The respondents hoped that this system would be integrated into existing systems or systems currently under development. Except for the question of funding, all the organisations gave either clearly positive or cautiously positive answers to all of the questions. All of them were interested in further discussions. The answers were submitted to the Committee for the Future.
This chapter discusses the general direction of technological development and the associated threats and opportunities for society. The progress of the hundred radical technologies evaluated as important in the previous report is assessed, and important advancements and news about breakthroughs in the technology baskets are pointed out. At the same time, needs to change the outlining of technology baskets are disclosed. Some technology baskets are proposed to be removed and others to be added, on the basis of the new material collected after the publication of the previous report. The proposals are preliminary, and this preliminary investigation does not rate technology baskets in accordance with the four-level model. However, the progress of the baskets is rated on the basis of expert assessment of the collected material, and the ratings are shown in the appendix material. In this chapter, '*' indicates the placement in one of the four categories of the TuVRad9/2013 report.

The approximately 1,000 post-TuVRad9/2013 technology sources presented in this chapter were collected through crowdsourcing. They are listed, grouped and classified in this preliminary investigation. A complete list is provided as Appendix 2. It includes the heading of the news topic, a reference link to the article discussing the topic and a link to the crowdsourcing discussion on the topic. The discussion may include references to other sources that touch on the subject. This chapter includes the most important preliminary observations and conclusions.

Compared with the attention paid to value-producing networks and individual baskets, the TuVRad9/2013 report paid less attention to the grouping of technologies, which is why the grouping was rather superficial. A new grouping is proposed here to enable group-specific description of the anticipated impact of development from the perspective of society. The purpose of the proposal is to clarify the grouping compared with the previous report. The grouping is based on the report Technology as an Enabler of Sustainable Well-being in the Modern Society, written by the author of this preliminary investigation for the Sitra fund. In this report, the 100 radical technologies listed in the Committee for the Future’s report, A Hundred New Opportunities for Finland, are grouped and the descriptions of the groups are used for the assessment of threats and opportunities in the sustainable well-being model developed by Sitra.

General technological development

The interaction between technology and society is bidirectional. Technological development is influenced by many structures of society, while technological development influences these structures. The development does not automatically lead to a positive result but involves threats as well as opportunities. The socio-technical regime, discussed in more detail in connection with the development needs of the value-producing networks in chapter 2, may allow the materialisation of threats and prevent the utilisation of
opportunities if society does not adapt to the technological development to a satisfactory extent.

A number of different indicators suggest that technological development is accelerating and that technologies are adopted for use increasingly fast. In global competition, this increases the gap between the first and last adopters and increases interference in the economy and society in rapidly and slowly developing areas alike. Pressures on many structures that are outdated from the technological perspective increase, as globalisation blurs borders between countries and increases remote effects.

7.1 Instrumentalisation (measurement and adjustment) and telecommunications

Measurement technology has developed increasingly sensitive sensors that give us information about our environment and ourselves. Households have access to devices that can analyse our genome or the composition of many substances or make a variety of medical findings. Sensors can get the energy they need from their environment and they enable wireless connection. Both wireless communication and communication by wire enable us to connect all the collected data to cloud services.

The number of smart devices is estimated to double over the next five years. Sensors collecting increasingly diverse information are incorporated in these devices and, at the same time, wireless sensors are becoming so small and inexpensive that they can easily be placed in the environment and even in the human body. In addition to sensors, many devices have evolved that activate and control various functions.

As a result of the development, people are getting more and more information about the environment and themselves, and an increasing number of functions can be remotely controlled. Stored and real-time data and controllability enable very advanced automation. With this data, robot-assisted work can be carried out regardless of the physical location of the person controlling the robot. On the other hand, many processes can be automatically monitored at such a detailed level that human monitoring is not necessary.

Technological development after the publication of the TuV9/2013 report and needs for improvement related to reporting:

Routine and complete DNA sequencing (2.01) ****

The most affordable human genome sequencer developed so far, Minion, has been launched on the market. It costs approximately EUR 2,000. You can order sequencing of your genome, including explanations, at a price starting from 300 dollars. The prices have fallen rapidly. Minion is inaccurate, but its nanopore technology that is based on graphene holes has been developed further. Simulations have shown that the technology could sequence genomes at an accuracy of 90% without false positives, at a rate of 66 billion base pairs per second. At this speed, the entire human genome could be read 32 times in a second, and on each iteration round the number of errors decreases to one tenth.
compared with the previous round. Thus, this technology will probably enable the
development of a quick and practically error-free DNA sequencer that is also very
affordable. In the future, genome sequencing may be as easy as photographing. In practice,
in addition to your own genome, it will be possible to routinely sequence the genomes of
other people, animals, food and diseases.

In addition to genome sequencing, writing of DNA sequences has improved. The Crispr-
Cas9 method is inexpensive, accurate and easy to use. It has been shared 23 thousand
times to researchers. The recently developed Crispr-Cif1 technology is even more accurate
and will be extensively distributed to researchers. As a result of the development, gene
editing is becoming an accurate and extensive activity. Recommendation: retain and
expand to include the editing of genes, in addition to decoding.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1,000 DNA sequencer Minion in use</td>
</tr>
<tr>
<td>Fast DNA sequencing</td>
</tr>
<tr>
<td>USA to analyse DNA from a million Americans</td>
</tr>
<tr>
<td>Fast DNA sequencing</td>
</tr>
<tr>
<td>DNA sequencer – test results (USB)</td>
</tr>
<tr>
<td>DNA sequencing using graphene</td>
</tr>
<tr>
<td>Minion USB DNA sequencer comes to market</td>
</tr>
<tr>
<td>Handheld PCR DNA sequencer</td>
</tr>
<tr>
<td>$1.000 whole genome (Illumina 2015)</td>
</tr>
<tr>
<td>Genome sequencing for $300</td>
</tr>
<tr>
<td>Simulated DNA sequencing, 66 billion bases/second</td>
</tr>
<tr>
<td>Plan on human GMO embryo at the Karolinska Institutet (Crip-Cas9)</td>
</tr>
<tr>
<td>Genetics of schizophrenia further clarified</td>
</tr>
<tr>
<td>Chemistry Nobel for DNA repair</td>
</tr>
<tr>
<td>Crispr-Cas9 DNA modification</td>
</tr>
<tr>
<td>Gene editing</td>
</tr>
<tr>
<td>Crispr-Cas9 & genome editing & regulation</td>
</tr>
</tbody>
</table>
Technology links after September 2013

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quick DNA information search and combination</td>
<td>http://spectrum.ieee.org/biomedical/diagnostics/software-helps-gene-editing-tool-crispr-live-up-to-its-hype</td>
</tr>
</tbody>
</table>

Biochips or biosensors able to diagnose diseases, physiological states and genetic features of organisms cheaply and rapidly (2.02) **

Biosensors are developing rapidly. In addition to detecting blood flow, new sensors and diagnostic applications have recently been developed for purposes such as the identification of predisposition to cancer; recognition of an extensive range of viruses with one test; detection of cancer from breath; and detection of suicide risk from blood. Bacteria have been modified to recognise cancer, and a drug test has been printed on paper. Extensive virus and protein mapping can be conducted using a handheld device that combines a sensitive sensor and optical analysis. Recommendation: retain or extend the heading to Affordable biochemical sensors

Technology links after September 2013

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testing a large number of proteins with a handheld device</td>
<td>http://www.scienceworldreport.com/articles/13249/20140303/complete-medical-check-up-chip.htm</td>
</tr>
<tr>
<td>DNA analyser (gene-specific)</td>
<td>http://www.quantumdx.com/devices.html</td>
</tr>
<tr>
<td>Suicide risk blood test</td>
<td>http://tinyurl.com/suicidal-blood-sample</td>
</tr>
</tbody>
</table>
Small portable magnetic resonance imaging scanner (2.03) *

Researchers have succeeded in demonstrating a portable MRI scanner with a cryogen-free, permanent magnet design. The device requires considerable further development. The development does not seem rapid and its significance seems low. Recommendation: incorporate in item 2.40.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMO bacterium to find cancer</td>
</tr>
<tr>
<td>Hand-held biosensor</td>
</tr>
</tbody>
</table>

Continuously monitored personal health (2.07) **

Devices for continuous or frequent monitoring of the human physiology are developing and spreading very rapidly. For example, options available for Apple's iPhone include ultrasound, microscope, imaging head for the imaging of the retina or eardrum, ECG, and a number of other measuring devices. Some of these have already been approved by US Food and Drug Administration FDA. While some devices are intended for use by health care professionals only, most of them can be used by consumers for the monitoring of their own health. Apple has developed a system for consumers that easily transfers the results to be viewed by the attending doctor.

Rapid development has been reported in the fields of very low-cost blood count systems and microwave stethoscopy. Glucose sensors have been attached to the skin or a contact lens, and haemoglobin levels can be read from a selfie of the eyelid. A dialysis belt weighing 5 kg and increasingly advanced diagnosis wristbands are among the latest news. New tests, such as a HIV and syphilis test costing 34 dollars, are launched in the market as accessories for mobile phones.

The Tricorder X-Prize contest has progressed to the finals. The deadline has been extended to January 2017. The objective is to develop a portable device that can reliably identify the specified 16 diseases when used by a layperson. It is very likely that by 2020, many diseases and conditions can be reliably diagnosed at home by the patients themselves. Recommendation: retain or split into normal monitoring of physiological metrics and self-diagnosis.
<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tricorder X-Prize finals</td>
<td>http://tricorder.xprize.org/teams</td>
</tr>
<tr>
<td>Ear infection imaging at home</td>
<td>http://spectrum.ieee.org/tech-talk/biomedical/devices/diagnosing-ear-infections-with-a-new-smartphone-gadget-</td>
</tr>
<tr>
<td>Dialysis belt (5 kg)</td>
<td>http://io9.com/this-medical-device-is-a-major-gamechanger-for-kidney-p-1658564050</td>
</tr>
<tr>
<td>Needle-free blood test at pharmacy</td>
<td>http://www.engadget.com/2014/11/18/walgreens-blood-tests/</td>
</tr>
<tr>
<td>Quantified self test</td>
<td>http://www.slideshare.net/PekkoVehvilinen/pekko-vehvilinen-suomen-mitatuin-mies-radio-nova-14122014</td>
</tr>
<tr>
<td>Contact lens for glucose level measurement</td>
<td>http://www.engadget.com/2014/01/16/google-smart-contact-lens/</td>
</tr>
<tr>
<td>Haemoglobin level from a selfie of the eyelid</td>
<td>http://www.eyenaemia.com/</td>
</tr>
<tr>
<td>Diagnosis wristband&API</td>
<td>http://www.cnet.com/products/samsung-simband/</td>
</tr>
<tr>
<td>Microwave stethoscopy</td>
<td>http://spectrum.ieee.org/biomedical/diagnostics/microwave-stethoscope-lets-physicians-peer-into-the-lungs</td>
</tr>
<tr>
<td>Body implants top 10</td>
<td>https://wtvox.com/2014/10/top-10-implantable-wearables-soon-body/</td>
</tr>
<tr>
<td>Stethoscope connected to smartphone diagnoses lung conditions</td>
<td>http://www.eurekalert.org/pub_releases/2016-02/hunes022316.php</td>
</tr>
</tbody>
</table>
Capturing and content searching of personal life (2.16) ***

In this group, development has progressed mainly in the form of map services and social media services that capture the actions of an individual and provide an archive view to them, combining different matters. The devices referred to in this group that would continuously record sound and image and would include a search function have not substantially advanced or become more common during the review period, with the exception of car dashboard cameras. They can become more common in connection with augmented reality or robotisation. Recommendation: remove.

Interfaces reacting on movements (2.21) ****

Until recently, the quality of interfaces reacting on movements has been rather poor. However, promising new methods have been demonstrated during the review period. A 'micro-radar' has been integrated to the circuit level that appears to be quick and accurate in demonstrations. The detection of eye movements has also improved. Oculus has introduced handles for its virtual glasses, and Myo has introduced a wristband that recognises motional guidance and various hand movements. The augmented reality glasses of Microsoft and Magic Leap also include a movement and gesture recognition feature. As virtual glasses and augmented reality glasses become more common, gesture and movement recognition will become more important. Recommendation: retain.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesture user interface – Soli</td>
</tr>
<tr>
<td>Myo movement control wristband</td>
</tr>
<tr>
<td>Microradar user interface</td>
</tr>
</tbody>
</table>

Thoughts monitored from brain and action based on them (2.26) **

Development of sensors and more accurate understanding of the structure of the brain enable placing machines directly under the control of the brain. Robot hands have been successfully controlled by thoughts in a number of experiments. Signals measured in the brain have also been tested for controlling smart glasses. The brain has been successfully connected to another brain and thoughts have been transferred. Words have been identified in thoughts. Sensors have been developed that are glued onto the head. In addition, there are remotely read sensors that are placed inside the head and that dissolve in the body at the end of their life cycle and are removed through metabolism. Bio-
compatible graphene implants have also been studied. In addition to these, successful attempts have been made to control the brain from outside of the head using laser beams and other electromagnetic radiation. In this way, it has been possible to relieve symptoms of Parkinson’s disease, improve learning results and even influence thoughts. In the USA, DARPA has launched a project on very accurate two-way linkage of the brain to information systems. Recommendation: retain and include the bidirectional aspect – direct control by thoughts and direct control of thoughts.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control by the brain</td>
</tr>
<tr>
<td>Flexible, permanent EEG sensor</td>
</tr>
<tr>
<td>Smart glasses controlled by thoughts</td>
</tr>
<tr>
<td>Direct control by the brain</td>
</tr>
</tbody>
</table>

Cheap Lidar (2.38)*

Laser and spaser systems have evolved fast. They can be used for preparing a 3D model of the environment and for detecting the distance and motion speed of objects. Laser pulses can be created with simple microcircuits, and the pulses can be manipulated with nanomaterials. A laser radar no longer needs fine-mechanical moving parts. The lowest prices of laser radars are now around EUR 200. Lidar systems are an important part of robot traffic. As a result of the price decrease, Lidar systems are already in the market incorporated into high-quality robot vacuum cleaners. Lidar wavebands have become more diverse, and systems that work in difficult weather conditions are being developed. Other distance measurement methods, such as radar and infrared radar, are often used together with Lidar systems. Recommendation: retain and expand to incorporate other sensors used for measuring distance.
Technology links after September 2013

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-cost Lidar for braking</td>
<td>http://spectrum.ieee.org/cars-that-think/transportation/sensors/cheap-lidar-for-automatic-braking</td>
</tr>
<tr>
<td>Low-cost Lidar</td>
<td>http://pulsedlight3d.com/</td>
</tr>
<tr>
<td>Low-cost $250 ‘solid state’ LIDAR</td>
<td>http://spectrum.ieee.org/cars-that-think/transportation/sensors/quanergy-solid-state-lidar</td>
</tr>
<tr>
<td>GPS tracking down to the centimeter</td>
<td>https://www.sciencedaily.com/releases/2016/02/160211111507.htm</td>
</tr>
</tbody>
</table>

Lenseless camera and image construction based on data analysis (2.39) ***

By measuring the direction of radiation and using structures such as compound eyes, images can be produced without a traditional lens. This requires combining observations with computational means. With similar means, using reflected pulses of pulses that have passed through matter, computational images can be formed of objects around a corner and people or material structures behind walls. All these areas are developing rapidly, mainly at the research level. Recommendation: retain.

Material radar (2.40) ****

Using a spectrometre, it is possible to deduce the composition of a radiating or radiation-reflecting material. The least expensive material radar is SCIO, which will be launched in the market at a price of 250 dollars. The launching of SCIO has been delayed, but, according to media, one thousand development versions have been distributed and a functioning device has been demonstrated to media. In these demonstrations, the device has even been able to distinguish between an original medicine and its generic version. VTT has been developing similar circuit technology in Finland. In the infrared range, molecular identification is based on the ‘fingerprint’ of reflected radiation. A number of
other wave ranges are being studied. At terahertz frequencies, identification is more accurate. Now it is even possible to form an image of molecular structure. At longer distances, material radar applications are studied in Finland for military use. For example, camouflage materials stand out from the surrounding terrain. By measuring Wi-Fi frequency reflections, moving people and other objects can be followed through walls. It is even possible to measure the heart rate. Moreover, material radars can be used for examining blood and other tissue samples, replacing a number of chemical analyses with optical methods. Many tests can be performed on passing people without them noticing anything. This is a very rapidly developing domain. Recommendation: retain.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nanospectroscopy</td>
</tr>
<tr>
<td>Hyperspectral camera</td>
</tr>
<tr>
<td>SCIO material radar</td>
</tr>
<tr>
<td>Material radar in Finland</td>
</tr>
<tr>
<td>Monitoring of humans (vital signs) through walls</td>
</tr>
<tr>
<td>Optical laboratory</td>
</tr>
<tr>
<td>Nanoscale metamaterial lens</td>
</tr>
<tr>
<td>Comprehensive set of blood tests optically</td>
</tr>
</tbody>
</table>
Cheap gas sensors (2.41) ***

Gas detection has advanced moderately well. In research studies, mould spores are detected; wearable gas sensors are designed to warn about conditions dangerous to the health; the prices of gas chromatographs are coming down to an affordable level. Experiments are being made on digitalising and printing smells. An increasing number of conclusions can be made on the basis of smells. Recommendation: retain or incorporate in expanded item 2.02.

Technology links after September 2013

<table>
<thead>
<tr>
<th>Technology</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recognition of mold spores</td>
<td>http://www.tekniikkatalous.fi/innovaatiot/tama+tulee+tarpeeseen+suomessa+kehittetiin+uusi+menetelma+homevaaurioiden+tunnistamiseen/a1062992</td>
</tr>
<tr>
<td>Artificial nose smells cancer</td>
<td>http://utain.uta.fi/uutiset/keinonen%C3%A4-haistaa-sy%C3%B6v%C3%A4n-virtsasta</td>
</tr>
<tr>
<td>Accurate NO2 detection with graphene oxid</td>
<td>http://pubs.rsc.org/en/Content/ArticleLanding/2014/NR/c4nr00332b</td>
</tr>
</tbody>
</table>

Very sensitive camera sensors based on nanocarbons (2.42) **

Nanocarbon-based optics have progressed, but no substantial breakthrough in camera cells at light wavelengths can be seen in near future. Recommendation: remove.

Technology links after September 2013

<table>
<thead>
<tr>
<th>Technology</th>
<th>Link</th>
</tr>
</thead>
</table>

Printed cheap biosensors (2.43) ****

Sensors and electronics have been printed on paper using inkjet technology. Many graphene-based sensors are also becoming very affordable. Recommendation: incorporate in expanded item 2.02.
Graphene-based terahertz devices (2.44) ***

Terahertz waves can now be manipulated and analysed. Research data has increased rapidly, and practical applications are expanding. There are already stores specialising in terahertz-based devices. The THz-waveband enables relatively accurate radar images regardless of snow or rain. Nano-level laser can be tuned to terahertz-range wavelengths. In spectroscopy, terahertz-range analysis is considerably more detailed compared with the infrared range. With terahertz waves, the speed of wireless communication can be increased by many orders of magnitude compared with the Wi-Fi range. Recommendation: expand the heading to manipulation of terahertz waves.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>THz equipment store opened</td>
</tr>
<tr>
<td>THz-IR with graphene plasmonics</td>
</tr>
<tr>
<td>THz imaging</td>
</tr>
<tr>
<td>Capture of terahertz rays with graphene</td>
</tr>
<tr>
<td>THz store</td>
</tr>
<tr>
<td>Tunable nanolaser & THz</td>
</tr>
</tbody>
</table>
Nanoradio (2.95) *

There are no observations of development in this field, but some energy issues related to sensors fitted inside blood vessels and cells has been resolved. According to research data, the minimum size of radio transmitters with a signal that can be heard through the human body is now 1mmx1mmx10mm. Recommendation: incorporate in item 2.05.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
</table>

LED-"radio" (2.96) *

LED technology suitable for wireless interroom communication is called LiFi connection. The theoretical speed is 10,000 times the speed of a WiFi connection. Researchers have achieved a speed of 224 Gbps. The suitability of the LiFi connection for identification has also been studied. The annual growth of the LiFi market is expected at nearly 100%, reaching six billion dollars by 2018. The first LiFi product, Li-1st, was introduced in 2014. Recommendation: retain, change the name to LiFi networks.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photonics modem (NASA)</td>
</tr>
</tbody>
</table>

Wireless transmission 2.5 terabytes per second (vortex beam) (2.97) ***

Optical Vortex is a demonstrated phenomenon. This phenomenon is used for purposes such as identifying planets in foreign solar systems. However, use of the phenomenon for improving the speed of telecommunications has proved challenging, due to its difficult controllability. Therefore, applications cannot be expected in near future. Recommendation: remove.
**Multi-channel communication and software-based controlling of information networks (2.98) **

So far, multi-channel communication has not become more common. Controlling of information networks has progressed quickly and is already mainly software-based. Recommendation: remove.

(new) Optics (2.300)

Optics is a very rapidly developing area. This is a general code related to the topic, including a collection of recent examples without a particular theme: Transparent (clear) aluminum developed, considerably harder than glass; femtosecond lasers have evolved quickly in different wavebands and in nanoscale (spaser); nanoscale optical switches, optical diodes and transistors have been developed. White-blue quantum dot leds have been produced; a paper-thin lamp has been printed out; millimetre-size microwave laser has been developed; miniaturised particle accelerator has been developed; black material with 0.035% reflectivity has been produced; artificial daylight has become realistic; photonic link for silicon-based processor has been produced; SPAD camera can see around the corner; WLAN signal to be visualised; optically active thin sheet to be produced using perovskite. Recommendation: analyse the group in more detail and identify trends with important effects to form a new group or several groups.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black material 0.035% Vantablack</td>
</tr>
<tr>
<td>Technology links after September 2013</td>
</tr>
<tr>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Quantum dot-based white-blue LED</td>
</tr>
<tr>
<td>Risks of LED lights</td>
</tr>
<tr>
<td>Simulated daylight</td>
</tr>
<tr>
<td>Smartphone & $2 lens as microscope</td>
</tr>
<tr>
<td>Graphene nanolaser (spaser)</td>
</tr>
<tr>
<td>Copper nanophotonics</td>
</tr>
<tr>
<td>Ultrafast microscope for atom-level imaging</td>
</tr>
</tbody>
</table>
7.2 Artificial intelligence (AI) and algorithmic reasoning

Artificial intelligence (AI) and algorithmic reasoning are evolving rapidly. As a result of this development, increasingly many data processing tasks can be automated. On one hand, this leads to leaderless organisations, on the other hand, bureaucracy becomes even more complicated. The development of artificial intelligence now focuses on learning. This means that machines will no longer solve problems that are programmed for it in advance. Instead, they can learn from the situations they encounter and progress towards new solutions like researchers do. For example, in demonstrations, artificial intelligence can detect diseases in people, play videogames it has never played before, identify content in pictures, solve middle school-level mathematical problems and even find scientific breakthroughs.

Many platforms have already been introduced that promote the development of AI applications. When any of these platforms becomes widespread, applications and devices developed on that platform can exchange their competencies. This means that if a robot detects and resolves a problem, it can share this information with other machines that use the same platform.

Thus, the effects of artificial intelligence are not limited to immaterial data processing. With the help of AI, robots and many other devices operated by people can recognise their environment and learn to perform tasks. This development is expected to have a very significant effect on current jobs and even the structures of society. The use of AI for military technology is consciously being restricted. Machines that can independently make decisions to kill people would change the character of war in an unpredictable manner.

Technological development after the publication of the TuV9/2013 report and needs for improvement related to reporting:

Human recognition systems (2.14) *

Human recognition technology has developed rapidly. Affordable DNA sequencers are being commercialised. Craig Venter has demonstrated an application that produces a recognisable facial image on the basis of human DNA sequence. Facebook and many other applications identify a person from a facial photo even if the photo of comparison was captured from a different angle. Recommendation: retain.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facebook recognises facial photos from different angles</td>
</tr>
<tr>
<td>Facial image from DNA, Venter</td>
</tr>
<tr>
<td>Facial image from DNA</td>
</tr>
</tbody>
</table>
Emotion management in robots and automatic recognition of emotions (2.15) ***

Human emotions can increasingly often be recognised from the face. For example, using detection of emotions and facial features, a speech given by George W. Bush has been demonstrated as an animation on the faces of different public figures. In near future, this may enable choosing your own acquaintances or any public figure to play roles in a movie. The recognition of emotions is a very useful feature for robots and automated services, as this helps to take into account human responses. Animated emotional faces are also experimented on robots and AI services. Recommendation: retain or incorporate in item 2.14.

Automatic speech recognition and translation (2.17) ***

Microsoft has included simultaneous interpretation in its free-of-charge videophone application, Skype. In the test version, the supported languages are English, Spanish, Italian and Chinese. The simultaneous interpretation application is based on a learning algorithm, and Microsoft believes that its quality will improve along with increasing use. In text-based communication, Microsoft supports translation between 50 different languages. Other companies are also including an increasing number of speech recognition and translation applications in their cloud services and smartphones. There are many paid speech recognition applications available, and the best of them exceed 95% accuracy. Speech recognition and translation are closely related to human recognition and structuring of meanings through frames of reference. The application domains range from communication of people speaking different languages to communication between humans and machines. The areas of application expand as robotisation and automated services become more common and the quality of translation software improves.
Recommendation: retain, but change as follows: speech recognition, speech synthesis and translation.

Technology links after September 2013

<table>
<thead>
<tr>
<th>Technology</th>
<th>URL</th>
</tr>
</thead>
</table>

Pattern recognition and pattern search services (2.30) ***

Pattern recognition as algorithms and learning AI systems has increased rapidly. In research studies, psychosis has been identified from speech, cancer has been optically detected by a computer, and a stroke has been anticipated from signals measured from the body. Smartphone detects early symptoms of Parkinson's, thoughts can be converted into words and a robot cook imitates cooking shows it has seen on TV. A number of open source code-based learning platforms for pattern recognition are available today. The development is now very rapid, speeded up by relatively recent breakthroughs. Recommendation: retain pattern recognition platforms, consider merging the most important application domains or incorporating them in new categories.

Technology links after September 2013

<table>
<thead>
<tr>
<th>Technology</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI, Google deep learning</td>
<td>https://medium.com/backchannel/google-search-will-be-your-next-brain-5207c26e4523</td>
</tr>
<tr>
<td>Deep learning AI</td>
<td>http://www.ted.com/talks/jeremy_howard_the_wonderful_and_terrifying_implications_of_computers_that_can_learn</td>
</tr>
<tr>
<td>AI learns to cook from video</td>
<td>http://www.hs.fi/tiede/a1305914088246?jako=df300339f3cd69f898d367d247fe73ac&ref=fb-share</td>
</tr>
<tr>
<td>Image recognition into text</td>
<td>http://deeplearning.cs.toronto.edu/i2t</td>
</tr>
<tr>
<td>PV calculator from satellite image</td>
<td>http://www.iflscience.com/technology/should-you-get-solar-panels-ask-google</td>
</tr>
<tr>
<td>Technology links after September 2013</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Psychosis detection from speech</td>
<td></td>
</tr>
<tr>
<td>Diagnostic mirror</td>
<td></td>
</tr>
<tr>
<td>Thoughts converted into words</td>
<td></td>
</tr>
<tr>
<td>Bioimage informatics</td>
<td></td>
</tr>
<tr>
<td>https://www.doria.fi/handle/10024/97260</td>
<td></td>
</tr>
<tr>
<td>Breakthrough of machine vision</td>
<td></td>
</tr>
<tr>
<td>http://www.technologyreview.com/view/530561/the-revolutionary-technique-that-quietly-changed-machine-vision-forever/</td>
<td></td>
</tr>
<tr>
<td>Words read from thoughts</td>
<td></td>
</tr>
<tr>
<td>http://www.newscientist.com/article/mg22429934.000-brain-decoder-can-eavesdrop-on-your-inner-voice.html</td>
<td></td>
</tr>
<tr>
<td>Smartphone detects Parkinson’s disease</td>
<td></td>
</tr>
<tr>
<td>http://www.ft.com/intl/cms/s/0/cb6ec31a-376b-11e4-971c-00144feabd0.html</td>
<td></td>
</tr>
<tr>
<td>Deep learning models</td>
<td></td>
</tr>
<tr>
<td>DR Watson</td>
<td></td>
</tr>
<tr>
<td>AI looks for hidden cancer links in patient records</td>
<td></td>
</tr>
</tbody>
</table>

Self-organising virtual world from the 3D data of the Internet (2.33)

The information network can offer increasingly detailed pictures from different parts of the world. However, for the time being, no rapid development can be seen towards self-organising virtual world produced in a decentralised manner. It is expected that people, mobile robots and an increasing number of satellites will produce continuously changing image material from all inhabited corners of the world. Currently, however, it seems probable that an accurate 3D model of the world with real-time situations will be produced centrally, mainly through the needs and abilities of robot traffic. Recommendation: incorporate in item 2.32.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>All of Denmark in Minecraft</td>
</tr>
<tr>
<td>Daily global picture</td>
</tr>
</tbody>
</table>
Predictive analytics based on self-organising data (2.34) **

The concept of self-organising data, or self-organising maps (SOM) was originally developed in Finland. It received extensive support in academic circles, and algorithms based on SOM have been used for a long time for the analysis of large data masses and for finding anomalies in fields such as financing. However, SOM is not rapidly spreading, and as regards self-organising data, learning and evolutive systems are quickly taking over. Recommendation: remove.

Simulation and mapping of brain (2.36) ***

Significant new details of the brain's memory mechanism have been identified. Part of the brain of a rat has been mapped and the most important functional mechanisms have been simulated. The mapping of the human brain is progressing rapidly. Qualcomm, IBM and Intel each are developing processors and memories that efficiently imitate the functional mechanisms of the brain. Recommendation: incorporate brain-like information technology in associative memory and modelling of the brain in item 2.26, Thoughts monitored from brain and action based on them. Remove this item.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revealing the memory structures of the brain</td>
</tr>
<tr>
<td>Modelling/printing of the brain</td>
</tr>
<tr>
<td>Emulation of brain (IBM)</td>
</tr>
<tr>
<td>Neuroprocessors</td>
</tr>
<tr>
<td>Talent from brain damage</td>
</tr>
</tbody>
</table>

Verbot – communicative and literary robots (new) (2.113)

Digital helpers have been a topic of discussion for a long time. Amazon’s Echo is a household appliance that can order pizza or a taxi and perform other tasks requested by the speaker. Moreover, speaking and writing robots edit news, write articles and operate
switchboards. The skills and uses of interactive applications and robots are expanding quickly. Recommendation: new category

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chat bots</td>
</tr>
<tr>
<td>Digital helper that understand speech</td>
</tr>
<tr>
<td>Virtual character relieves depression</td>
</tr>
<tr>
<td>MS Verbot experiment in China</td>
</tr>
</tbody>
</table>

Artificial general intelligence (new) (2.600)

Artificial intelligence is spreading on a broad front, and startup financing is rapidly increasing. Researchers are increasingly providing new examples of artificial intelligence that is capable of learning and can manage in uncertain situations. A computer can play poker at professional level, solve previously unsolved scientific problems and recognise what is happening in a photograph. Amazon is testing a household device that is capable of interaction through speech and for which others can develop applications as well. The probably most important development is the emergence of new platforms for AI, through which new application domains can be quickly adopted by AI. These include platforms such as IBM’s Watson and Google’s Deep Mind. Some of the platforms that may have required considerable effort have been open-sourced. Learning AI methods have been developed; one of the emerging methods is Deep Learning Recommendation: this item should be structured better and at least two topics to be monitored should be created.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem-solving by AI without complete information</td>
</tr>
<tr>
<td>Review of the threats of AI</td>
</tr>
<tr>
<td>AI review, several links</td>
</tr>
<tr>
<td>Risks of AI</td>
</tr>
<tr>
<td>Deep learning framework comparison</td>
</tr>
</tbody>
</table>
7.3 Digitalisation of the storage and processing of information

Events in our environment are increasingly being digitalised, with increasingly accurate instruments. The amount of stored information nearly doubles every two years and will increase nearly hundredfold by the end of the 2020s. This development is enabled by the continuous development of computer memory devices and processing power.

The improved availability of information can be seen as the most prominent effect of this. When all available information is stored in a digital format, it is easy to share. Along with the rapid development of processing power and presentation technique, digital information will also be much more easy to find and detect in the near future.

As a result of this development, decision-making is less and less often tied to any particular location. Online trade will become easier, tourism can become virtual, learning and research will increasingly often rely on information networks, independent of the physical location. The gathering and combination of information from different sources will become a more common revenue model, associated with strong economies of scale. The winner can easily make citizens disclose their data and achieve a strong position in the market by sharing these data.

Technological development after the publication of the TuV9/2013 report and needs for improvement related to reporting:

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open AI, Musk</td>
</tr>
<tr>
<td>https://medium.com/backchannel/how-elon-musk-and-y-combinator-plan-to-stop-computers-from-taking-over-17e0e27dd02a</td>
</tr>
<tr>
<td>AI startup financing on the increase</td>
</tr>
<tr>
<td>AI review 2, several links</td>
</tr>
<tr>
<td>https://www.facebook.com/notes/10151609046812712/</td>
</tr>
<tr>
<td>AI solves a difficult mathematical problem</td>
</tr>
<tr>
<td>Deep vision, AI, Deep Learning examples</td>
</tr>
<tr>
<td>https://github.com/kjw0612/awesome-deep-vision</td>
</tr>
<tr>
<td>Microsoft’s AI platform open-sourced</td>
</tr>
<tr>
<td>Google Deep Mind</td>
</tr>
<tr>
<td>AI review 3, several links</td>
</tr>
<tr>
<td>https://www.facebook.com/notes/juan-carlos-kuri-pinto/deep-x/10153080971122712</td>
</tr>
<tr>
<td>Diagnosis robot for X-ray images, etc.</td>
</tr>
<tr>
<td>http://singularityhub.com/2016/01/18/digital-diagnosis-intelligent-machines-do-a-better-job-than-humans/</td>
</tr>
<tr>
<td>Low-consumption AI processor for smartphones</td>
</tr>
<tr>
<td>http://www.engadget.com/2016/02/07/low-power-neural-network-chip/</td>
</tr>
</tbody>
</table>

7.3 Digitalisation of the storage and processing of information

Events in our environment are increasingly being digitalised, with increasingly accurate instruments. The amount of stored information nearly doubles every two years and will increase nearly hundredfold by the end of the 2020s. This development is enabled by the continuous development of computer memory devices and processing power.

The improved availability of information can be seen as the most prominent effect of this. When all available information is stored in a digital format, it is easy to share. Along with the rapid development of processing power and presentation technique, digital information will also be much more easy to find and detect in the near future.

As a result of this development, decision-making is less and less often tied to any particular location. Online trade will become easier, tourism can become virtual, learning and research will increasingly often rely on information networks, independent of the physical location. The gathering and combination of information from different sources will become a more common revenue model, associated with strong economies of scale. The winner can easily make citizens disclose their data and achieve a strong position in the market by sharing these data.

Technological development after the publication of the TuV9/2013 report and needs for improvement related to reporting:
Schools in the cloud (2.12) ****

Online learning is increasing as a well-financed business. Considerable part of online teaching is globally freely available. For example, Duolingo offers free-of-charge language courses in 23 languages. Many providers of MOOC courses finance their operations by charging fees for certificates. Khan Academy’s educational videos have been translated into more than 65 languages already. The US government is studying the efficiency if Khan Academy’s learning materials in teaching in field experiments in the academic year 2015–2016. Khan Academy’s courses already cover most subjects completely. The technology is developing and spreading as anticipated, and the effects will increase significantly in the future. Recommendation: retain.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gamification platform for learning</td>
</tr>
</tbody>
</table>

Augmented reality glasses (2.22) ****

Google Glass, predicted to be the forerunner in augmented reality, was not a success on the market, due to its modest features. Microsoft is going to launch its very advanced Hololens product. Furthermore, Magic Leap, with nearly 1.5 billion dollar financing from Google and a number of other technology companies, has demonstrated its advanced technology and is preparing to start production. Both of these AR glasses can place realistic-looking three-dimensional objects in the wearer’s normal discovery environment in a natural manner and so that the animated objects retain their location in the physical environment as the wearer moves. The test evaluations have been very positive.

Three-dimensional holograms can be produced for detection by the human eye so that the viewer does not need any special glasses or other equipment. The applications of this technology are partly overlapping with augmented reality glasses, but the technology is still in an early stage of development. Early-stage experiments include also contact lenses that add information to the visual field or modify it somehow (e.g. telescope or night vision).

Virtual reality glasses are technically less complicated than augmented reality glasses. They have rapidly progressed to a mature product stage, opening a new broad market for applications and media content of virtual reality. The New York Times has distributed virtual reality glasses to a million customers and is producing virtual reality content in its online version. The application domains of virtual reality and augmented reality will
clearly diverge from each other. Their combined market in 2020 is estimated at one hundred billion dollars, which means that the growth will be very fast. Finland has significant expertise in this area. Recommendation: retain Augmented reality glasses. Add Virtual reality glasses as a new item.

Technology links after September 2013

<table>
<thead>
<tr>
<th>Technology</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artificial (super) lens for the eye</td>
<td>http://www.collective-evolution.com/2015/06/19/the-8-minute-surgery-that-will-give-you-superhuman-vision-forever/</td>
</tr>
<tr>
<td>Artificial eyes 2027</td>
<td>http://3dprint.com/52616/mhox-3d-printed-eyes/</td>
</tr>
<tr>
<td>AR-Magic Leap, just another day</td>
<td>https://www.youtube.com/watch?v=kPMHcanq0xM</td>
</tr>
<tr>
<td>AR Hololens demo</td>
<td>http://www.pcmag.com/article2/0,2817,2475581,00.asp</td>
</tr>
<tr>
<td>Atheer, 2D AR glasses</td>
<td>http://atheerair.com/</td>
</tr>
<tr>
<td>Telescopic contact lens</td>
<td>https://www.facebook.com/RichardDawkinsFoundation/photos/a.496176595154.294030.8798180154/1015187099479015/?type=3&ref=nf</td>
</tr>
<tr>
<td>Quadcopter flying with VR glasses</td>
<td>http://www.youtube.com/CharpuFPV</td>
</tr>
<tr>
<td>Infrared retina implant testing</td>
<td>http://spectrum.ieee.org/tech-talk/biomedical/bionics/blind-patients-will-soon-try-a-new-bionic-eye</td>
</tr>
<tr>
<td>Night vision glasses of graphene</td>
<td>http://www.sciencealert.com/graphene-can-create-super-powerful-night-vision-lenses-that-are-just-one-atom-thick</td>
</tr>
<tr>
<td>Earbuds modifying the sound environ</td>
<td>http://gizmodo.com/whats-its-like-to-wear-bionic-earbuds-1756802862</td>
</tr>
</tbody>
</table>
Technology links after September 2013

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Google Glass in Dubai</td>
<td>http://nuviun.com/content/news/dubai-using-google-glass-beyond-healthcare</td>
</tr>
<tr>
<td>AR Magic Leap development environment</td>
<td>http://techcrunch.com/2015/06/02/magic-leap-platform/</td>
</tr>
<tr>
<td>Oculus VR in military use</td>
<td>http://www.itviikko.fi/uutiset/2014/05/06/panssarikuskit-suunnistavat-oculus-riftilla--vaikka-pahaa-tekisi/20146372/7</td>
</tr>
<tr>
<td>Virtual (CT) autopsy</td>
<td>https://www.youtube.com/watch?v=9usf3kJL7mc</td>
</tr>
<tr>
<td>VTT’s AR display</td>
<td>http://www.vtt.fi/medialle/uutiset/kännykkä-osaksi-tavallisia-silmälaseja</td>
</tr>
<tr>
<td>VR with projectors without glasses</td>
<td>http://www.fastcodesign.com/3036628/microsoft-can-now-turn-any-space-into-the-holodeck?partner=rss</td>
</tr>
<tr>
<td>Hologram projected in mid-air</td>
<td>http://www.bitrebels.com/technology/realview-mid-air-holography-station/</td>
</tr>
<tr>
<td>360-degree video Facebook/BBC</td>
<td>https://www.facebook.com/bbcearth/videos/1135051163195105/?fref=nf</td>
</tr>
<tr>
<td>Hololens technology explained</td>
<td>https://www.youtube.com/watch?v=606oZKLa_s</td>
</tr>
</tbody>
</table>

Interfaces based on feeling of touch (2.23) ****

Haptic technologies have developed slowly, and no market breakthrough can be seen in the near future. However, development has not stopped. Touchable holograms have been created in the laboratory using ultrasound or laser. Haptic clothes for computer game players have been introduced in the market, but they are too expensive to become more common. Recommendation: retain.

Technology links after September 2013

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haptic interface in the air with ultrasound</td>
<td>http://www.youtube.com/watch?v=2QkbVr4j7CM</td>
</tr>
<tr>
<td>Finnish developer of haptic technology</td>
<td>http://senseg.fi/</td>
</tr>
</tbody>
</table>
Large haptic screens (2.24) ***

Large haptic screens have made a breakthrough, and they can be purchased in stores. The size and accuracy of the screens will increase at a steady rate along with decreasing prices. Recommendation: remove, because this has materialised.

Digital mirror (2.25) **

The use of digital mirrors in stores has increased slowly, and their characteristics are still limited. For example, you can see a delayed image in the mirror, showing yourself from behind. Accessories, such as handbags that the store does not physically carry, can be added to the mirror image. Some mirrors enable changing the colour of accessories. Laboratories are experimenting with digital mirrors that analyse your health status or show your internal organs in the mirror image. Recommendation: incorporate as an application domain in 2.31, Effortless 3D imaging of parts.

Flexible and transparent screens using cheap materials (2.27) **

The category does not seem to have made significant progress and related technology news have not been observed. The impact of the technology cannot be considered very high, due to the rapid development of augmented reality. Recommendation: remove.

Effortless 3D imaging of parts (2.31) ***

3D imaging of parts and spaces has progressed rapidly. Recognisable 3D models can be produced with a number of consumer-level devices. Prices of accurate 3D scanners have fallen rapidly. The price of laser scanning has decreased considerably, which promotes
this domain, as well as ToF-3D imaging, which is also based on the time delay in reflection. Recommendation: retain.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>More precise 3D imaging by exploiting polarisation</td>
</tr>
</tbody>
</table>

Real-time 3D modelling of the environment (2.32) **

Nokia’s new OZO camera produces professional-level 3D video content in near real-time. Consumer-level instruments for 3D modelling of the environment are available in the market. Google’s Tango project anticipates an important breakthrough for consumer-level devices. The capacity of Lidar systems in robot cars for real-time modelling of the environment has improved rapidly. The best robot vacuum cleaners model their environment in real-time. In experiments, quadcopters recognise their environment to be able to fly near people and in the woods. Sound cameras identify problems in mechanics. This is a rapidly developing domain. Recommendation: retain.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nokia OZO VR camera $60K</td>
</tr>
<tr>
<td>3D-filmed video</td>
</tr>
</tbody>
</table>
Universal memory based on new materials and solutions (2.35) **

A graphene memory circuit has been produced. Memristor development is considered important in many ways. Information has been stored in crystal quartz in a 3D structure. In this way, a small glass byte can hold 360 terabytes. IBM has developed an associative memory that works like the memory of the brain. IBM has fabricated one million brain-like neurons on one circuit. Many other storage techniques have been developed that, on one hand, reduce the costs of data storage or, on the other hand, make the retrieval of data faster or smarter. Recommendation: split the technology basket in two: conventional memory and associative memory.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supermemory of a quartz crystal</td>
</tr>
<tr>
<td>Memristor from Finland</td>
</tr>
</tbody>
</table>

Quantum computers (2.37) *

Many substantial problems with regard to the development of quantum computers have been solved. Google has announced that, on the basis of the tests it has conducted, the quantum computer in its use can solve many mathematical problems at a speed that is many orders of magnitude higher than the speed of conventional computers. Quantum computers are feared, as they are believed to be able to break the encryptions of current systems. This would considerably complicate businesses such as banking. Quantum
entanglement offers a possible solution to the problem, but the transition period can be difficult. Recommendation: retain.

Technology links after September 2013

<table>
<thead>
<tr>
<th>Technology</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantum computer (Google)</td>
<td>http://www.extremetech.com/extreme/219160-googles-quantum-computer-is-100-million-times-faster-than-a-conventional-system</td>
</tr>
</tbody>
</table>

**DNA memory (2.67) * **

The methods for reading and writing DNA sequence have become faster, more accurate and less expensive, both at the product level and as research-level promises. In laboratory-level experiments, DNA memory has been used as the memory in nanoscale robots. However, the use of DNA sequence as mass memory has not made progress. Recommendation: incorporate in item 2.1.

Technology links after September 2013

<table>
<thead>
<tr>
<th>Technology</th>
<th>Link</th>
</tr>
</thead>
</table>

Extremely dense processors that take quantum phenomena into account (2.72) **

Processor density has continued to increase. As it is not known how to efficiently increase the complexity of processors, the increase in process density creates pressure on the development of parallel computing. This will change applications and ICT architecture.
Nearly all circuit development and, particularly, quantum computing development, has to do with quantum-level phenomena. Recommendation: incorporate in item 2.37.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
<th></th>
</tr>
</thead>
</table>

7.4 Traffic, mobility and logistics

Technological development has many effects on traffic and mobility. Traffic is rapidly becoming robotised. Until now, the effect has been visible only as improved road safety. Future development is expected to have significant impact on the availability and costs of passenger and freight traffic services alike. Driverless freight traffic enables the optimisation of fleet and transport times. In passenger traffic, decreasing prices and improved availability of transport services will enable people to give up their cars. This will reduce the overall need for cars and parking space.

The development of battery technology and electric motors are paving the way for more extensive electrification of transport. In addition to cars, lighter forms of traffic are also subject to electrification. Electric airplanes are being designed, and they are seen as a sensible solution from the perspective of the anticipated future battery technology. Electricity is also an increasing source of energy in water transport. Through technological development, quadcopters and other drones have become potential candidates for use in the distribution of goods.

The development of transport has a wide-reaching impact on urban structure, people’s time management and even the position of cities. Many cities have grown and prospered thanks to sea transport. Container traffic has also modified the world. The Hyperloop with its speed of 1,200 km/h will transform the economic geography in a similar way.

In the future, the technology of mobility will impact the daily life of many physically disabled people by restoring their functional ability. Furthermore, transport-related technology provides devices with an increasingly easy access to space or other less easily accessible destinations.

Technological development after the publication of the TuV9/2013 report and needs for improvement related to reporting:
Self-driving car (2.45) ****

Elon Musk explains that, by the end of 2018, Tesla will drive itself without a driver to the person calling it, even if it has to drive through the entire USA. Ford has reported about the winter driving feature of its self-driving car. Toyota has joined the other big car manufacturers and believes now in the rapid development of robot transportation. Google's cars have driven autonomously approximately two million kilometres. Google is testing more than 50 driverless cars. The technology required by self-driving cars is developing and becoming less expensive, as expected. The power of the artificial intelligence processor developed for self-driving cars equals 150 Apple laptops. Self-driving cars are being tested in many cities in normal traffic. Increasingly many investigations take into account the use of self-driving cars as a service. The taxi services Uber and Lyft have announced that they are aiming for driverless cars. Recommendation: retain.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robotaxi in South Korea</td>
</tr>
<tr>
<td>GM to invest $500 million in Lyft as</td>
</tr>
<tr>
<td>Processor for self-driving cars</td>
</tr>
<tr>
<td>driving cars in Sweden</td>
</tr>
</tbody>
</table>
Technology links after September 2013

<table>
<thead>
<tr>
<th>Category</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toyota’s robotics</td>
<td>http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/gill-pratt-on-toyota-robot-plans</td>
</tr>
<tr>
<td>Self-driving cars and Finland</td>
<td>http://www.ess.fi/uutiset/kotimaa/article1820116.ece?ref=ece_frontpage-section-teaser-groupSection-default</td>
</tr>
<tr>
<td>Uber to participate in research on self-driving cars</td>
<td>http://techcrunch.com/2015/02/02/uber-opening-robotics-research-facility-in-pittsburgh-to-build-self-driving-cars/</td>
</tr>
<tr>
<td>Uber and self-driving cars</td>
<td>http://m.fastcompany.com/3050250/what-makes-uber-run</td>
</tr>
<tr>
<td>Test driving Tesla in Finland</td>
<td>http://www.stara.fi/2015/10/25/tesla-model-s-autopilot-autosteer/</td>
</tr>
</tbody>
</table>

1- or 2-wheeled vehicles for personal or goods transport (2.46) ***

Lightweight electric vehicles have become legal in Finland. There are a number of one- and two-wheeled electric vehicles for personal transport in the market. Many of them are small or foldable so that they can easily be carried along on public transport vehicles. Small-sized transport vehicles for goods have been demonstrated. Their development potential continues to be significant. Recommendation: retain.

Technology links after September 2013

<table>
<thead>
<tr>
<th>Category</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urb-E electric scooter</td>
<td>http://techcrunch.com/2014/02/10/urb-e-the-fold-up-electric-scooter-goes-live-on-indiegogo/</td>
</tr>
</tbody>
</table>
Quadcopters (2.47) ***

Quadcopters have evolved fast. In many countries, legislation has been amended to make it more permissive for quadcopters and other drones. In demonstrations, quadcopters can deliver parcels, perform assembly tasks and carry out monitoring and measurements. In many countries, they have received permissions to fly outside of visual connection. A number of creative ideas have been tested. Examples of developed applications include quadcopters that take a defibrillator to a heart attack patient, build rope bridges or carry guns. Amazon promises to deliver the goods you ordered to your home in 30 minutes, once the authorities grant the permission to launch the service. Special processors have been developed for quadcopters that recognise patterns and plan routes, in order to enable their autonomous activity. Quadcopters have been demonstrated to fly without problems in the woods and among people. Recommendation: retain.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quadcopter test by Posti</td>
</tr>
<tr>
<td>Quadcopters build a rope bridge</td>
</tr>
<tr>
<td>Quadcopters for medicine deliveries (DHL)</td>
</tr>
<tr>
<td>Tree planting by quadcopters – at 15% of current cost</td>
</tr>
<tr>
<td>Biodegradable body material in quadcopter</td>
</tr>
<tr>
<td>Quadcopter regulation in the USA</td>
</tr>
<tr>
<td>Armed quadcopter</td>
</tr>
<tr>
<td>Quadcopter saving lives</td>
</tr>
<tr>
<td>Gimball quadcopter manages tight spots</td>
</tr>
<tr>
<td>Quadcopter drone</td>
</tr>
<tr>
<td>Quadcopter defibrillator</td>
</tr>
</tbody>
</table>
Lightweight camera quadcopter

Hoverboard with quadcopter

Amazon’s quadcopter announcement in 2013
http://www.theverge.com/2013/12/1/5164340/delivery-drones-are-coming-jeff-bezos-previews-half-hour-shipping

Google to start quadcopter delivery in 2017

Public transport and quadcopters
https://www.facebook.com/worldbulletin/videos/1136275596399437/?fref=nf

Drone fighter
http://gizmodo.com/unmanned-drones-landing-autonomously-next-to-f-18s-is-a-1623368962

Tracking of quadcopters
https://wtvox.com/robotics/verizon-and-nasa-are-developing-a-system-to-track-drones/

Autonomous quadcopters
https://youtu.be/ZHNM37maK0

A crowd of robots building things

Quadcopter delivery
http://in.reuters.com/article/2015/10/27/walmart-stores-drones-idINKCN0SL0B120151027

Festo robotic bird
http://www.ted.com/talks/a_robot_that_flies_like_a_bird.html

FAA to launch drone tests
http://www.youtube.com/watch?v=E2stferhRgU

EU-RPAS (drone) regulation
https://www.facebook.com/download/1397695460508596/NPA%202014-09.pdf

Quadcopter boarding on snow
https://www.facebook.com/verge/videos/1031743590195317/?fref=nf

Quadcopter sports
https://www.facebook.com/nrklivsstil/videos/10154044139728619/

On-demand personal aviation services (2.48) *

Many light aircrafts have been developed, in the belief that batteries will rapidly become lighter. The production of a Finnish electric aircraft, Flynano, has started. It weighs 70 kg and carries a pilot. It takes off from and lands on water. Large-scale quadcopter technology has been applied to personal transport. Recommendation: retain.

Bicyclecopter
http://www.facebook.com/haberaycom/videos/1134855556539984/?fref=nf

Volocopter
https://www.youtube.com/watch?v=tNuiEa8LTHI

VTOL light aircraft
http://www.jobyaviation.com/S2/

Light aircraft
Quadcopter for person transport https://www.facebook.com/DrSaiSatisht/videos/693522244049344/
Arca Hoverboard http://nextbigfuture.com/2015/12/arcaspace-makes-true-125-mph-battery.html
Person copter https://www.facebook.com/groups/TuVRadikaalit/permalink/851170468333894/
Electric aircraft 2017 Nasa http://nextbigfuture.com/2015/12/nasa-will-test-distributed-electric.html
Electric aircraft http://www.talkmarkets.com/content/us-markets/the-airbus-e-fan-takes-to-the-skies?post=70721

Vactrains (2.49) *

At the time of finalising the TuVRad9/2013 report, vactrain development focused on the Hyperloop technology introduced by Elon Musk. The calculated speed of the Hyperloop is 1,200 km/h, and its calculated construction cost is half of the cost of a motorway. After Musk introduced the idea, many parties have started building a test track and developing carriage technology according to plan. So far, Hyperloop projects have continuously been receiving more support. Recommendation: retain, change the name to Vactrain – Hyperloop.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperloop tests are advancing</td>
</tr>
<tr>
<td>Hyperloop test track</td>
</tr>
<tr>
<td>Hyperloop test track</td>
</tr>
<tr>
<td>Hyperloop towards testing</td>
</tr>
</tbody>
</table>

CubeSat and other minisatellites (2.51) **

One litre of volume, one kilogram of weight, miniaturisation of electronics is turning Cubesat from a challenge to normal routine for satellite developers. Satellite launching costs are rapidly decreasing as commercial activity in space is expanding. Many actors,
including commercial rocket companies, are developing affordable solutions for the launching of satellites. Worth noting is the Space-X company's attempt to develop a landing and reusable carrier rocket. Satellite applications are evolving. For example, there are plans to build a global WiFi network supported by thousands of satellites. The collection of meteorites and valuable lunar minerals is being planned at a slightly longer time span. Rocket engines are being developed for carrier rockets and for travelling from the orbit of Earth to interplanetary orbit and into outer space. It has also been planned to facilitate access to space using a space lift and buildings that reach the upper layers of the atmosphere. The development is continuous and rapid. Recommendation: retain.

Technology links after September 2013

<table>
<thead>
<tr>
<th>Inexpensive access to orbit</th>
<th>http://www.rocketlabusa.com/index.html</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cubesat WiFi connection</td>
<td>http://www.ibtimes.com/introducing-outernet-free-worldwide-wi-fi-access-beamed-space-1556016</td>
</tr>
<tr>
<td>Inexpensive satellites (launched by jet planes, NASA)</td>
<td>http://www.upi.com/Science_News/2015/02/06/Can-jet-planes-launch-small-satellites-into-orbit-on-the-cheap/7371423260087/</td>
</tr>
<tr>
<td>Reusable rocket</td>
<td>http://nextbigfuture.com/2015/08/australia-working-on-reusable-rockets.html</td>
</tr>
<tr>
<td>Ion space drive</td>
<td>http://nextbigfuture.com/2015/09/new-ion-drive-achieves-14600-isp-which.html</td>
</tr>
<tr>
<td>Nasa EmDrive (unverified)</td>
<td>http://blogs.discovermagazine.com/outthere/2014/08/06/nasa-validate-impossible-space-drive-word/</td>
</tr>
<tr>
<td>Ionic thruster</td>
<td>http://newsoffice.mit.edu/2013/ionic-thrusters-0403</td>
</tr>
</tbody>
</table>

Light continuously flying equipment (2.52) *

Strong lightweight structures, efficient solar panels based on thin sheets, light electric engines and light high-capacity batteries enable the construction of a light aircraft that supplies its energy by itself during flight. Such an aircraft can fly continuously, without having to land except for service or loading of cargo. The goal has become closer and many companies, such as Google and Facebook, have made considerable investments in the development. The current prototype of Google's Solara weighs 160 kg and has a wingspan
of 50 metres. The first flight in 2015 failed, but the project continues. Air balloons have also been developed with the objective of establishing Internet access for regions that do not have base stations for a variety of reasons. Recommendation: retain.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Google Loon around the world in 22 days</td>
</tr>
<tr>
<td>Atm satellites Facebook</td>
</tr>
<tr>
<td>Google Project Loon</td>
</tr>
<tr>
<td>Atmospheric satellite aircraft Solara being tested</td>
</tr>
<tr>
<td>Atmospheric satellite (Facebook)</td>
</tr>
<tr>
<td>Solar-powered aircraft around the world</td>
</tr>
</tbody>
</table>

A walking robot with hands (2.54)*

The gait of the two-legged robot has been demonstrated outdoors, such as on forest paths. Four-legged robots can already walk smoothly in rugged terrain. A number of robots have been developed that can walk in a built-up environment. Honda’s Asimo has demonstrated running movement and it remains standing when shoved. The hands of robots have also developed rapidly. A walking robot with hands has been demonstrated to perform simple household chores. The durability of batteries and smoothness of movements require further development. Mostly, the development of smooth gait and useful hands takes place in separate projects. The interfaces in robotisation are not yet mature enough for combining the best features without problems. Recommendation: incorporate the section on robot legs in item 2.70 and the section on robot hands in item 2.61.
The cyber insect (2.55) *

The development of extremely small robots has progressed, but slowly. The flight of an insect can now be imitated with a mosquito-sized gadget that, however, cannot carry its own power source. Robots have been developed that are the size of a cockroach and move like one. The applications include rescue operations, espionage and research. Recommendation: remove, due to low significance and slow progress.

Robotic legs and exoskeleton that reinforces movement (2.70) ****

Robotic legs and gait assistants have developed rapidly. Honda is renting out a lightweight (2.6 kg) knee-lifting gait assistant at EUR 350 per month. Many companies have introduced robot legs and exoskeletons in the market for people with weak legs and for heavy jobs. Robotic legs are available also for patients with paralysed lower limbs. Robotic legs made of soft materials and artificial muscles are being experimented. Robotisation involves great advantages for the leg prosthesis industry. Robotised prostheses enable very natural-looking movements. The products are in a rapid stage of development and their spreading in the market is only beginning. Recommendation: retain.
Technology links after September 2013

<table>
<thead>
<tr>
<th>Prosthetic leg with sense of touch</th>
<th>http://europe.newsweek.com/worlds-first-feeling-prosthetic-leg-revealed-328387</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robotic legs for paralysed patients</td>
<td>http://www.hs.fi/tiede/a1441168890154?jako=a829b8b0e33960c08e33e9dce5a91ef&ref=tw-share</td>
</tr>
<tr>
<td>Robotic leg prostheses</td>
<td>https://www.ted.com/talks/hugh_herr_the_new_bionics_that_let_us_run_climb_and_dance</td>
</tr>
<tr>
<td>Robotic leg prostesis</td>
<td>https://www.youtube.com/watch?v=SLSOsy7MRHA</td>
</tr>
<tr>
<td>Gait assistant from Honda</td>
<td>http://www.youtube.com/watch?v=SLSOsy7MRHA</td>
</tr>
</tbody>
</table>

New power sources for vehicles (2.103)

Electric cars, electric aircrafts and electric ships are gradually becoming more common. Recovery of mechanical and potential energy improves their energy-efficiency. For example, partial capture of rolling friction reduces the energy-efficiency benefit of rail traffic compared with wheel traffic. Sweden is implementing trolley truck lines. In addition to electric cars, cars running on compressed air and hydrogen cell cars are being experimented. Recommendation: new category either for electric car technology or energy solutions for vehicles.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rolling friction into energy</td>
</tr>
<tr>
<td>Compressed air/gas hybrid car</td>
</tr>
<tr>
<td>Tesla 800 km on a single charge</td>
</tr>
<tr>
<td>Compressed air car AIRPod</td>
</tr>
<tr>
<td>Airless tyre (Michelin)</td>
</tr>
</tbody>
</table>
(new) Radical development of water-borne traffic (2.104)

Unmanned ships are being planned for waterborne traffic. The advantages include no need for a crew, possibility to travel more slowly and optimisation of vessel size. New durable and light materials affect the structures of ships. Ships can also capture energy from wind through kite power plants, as well as wave and solar power. Vessels running on continuously renewable power are possible and they are being experimented with for research purposes. They may also be practical for monitoring purposes, as well as the transportation of inexpensive non-perishable materials and the collection of plastic pollution from the sea. Robotisation influences water-borne traffic, favouring inland navigation, as loading and unloading can be automated. Robotisation also influences ship structures, as quick foiling becomes automatic. Recommendation: new category.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plug-in hybrid ship</td>
</tr>
<tr>
<td>http://cleantechnica.com/2015/10/26/norway-plans-to-</td>
</tr>
<tr>
<td>construct-a-fleet-of-plug-in-hybrid-ships/</td>
</tr>
<tr>
<td>Robotic ships RR+VTT</td>
</tr>
<tr>
<td>http://www.tekniikkatalous.fi/Liikenne/suomalaiset+kehittavat+</td>
</tr>
<tr>
<td>automaatihjauusta+laivoihin++kapteeni+tuijottaan+naytt/</td>
</tr>
<tr>
<td>Foiling</td>
</tr>
</tbody>
</table>

7.5 Production of goods and services

An important rising trend in goods production is the decentralisation of production enabled by flexible robotisation. Conventional automation systems have been rigid and difficult to decentralise. Typically, automation has promoted economies of scale, regional specialisation and global exchange. Flexibility is an important characteristic associated with robotisation and new production methods. Flexible production lines equipped with IT applications can manufacture short series and diverse products. At the extreme end of the development, a 3D printer or handy robot can manufacture almost any number of different products even individually. The strongest impact of this development may be the decentralisation of production, so that it comes closer to the market. Simple products can even be produced at home.

In service production, logistics have played an even more important role compared with the production of goods, excluding areas such as telephone services. Either the customer or the service provider has travelled to meet the other. Virtual reality is immaterialising an increasing number of services. Robotisation enables automated production of physical services. In addition to fully automated service, robotisation enables providing services through remote presence, so that the service provider and customer meet through a
machine in the service situation. For example, snow-ploughing can be controlled remotely, so that only the machine that physically performs the service goes to the customer’s place.

The transition in goods and service production has an impact on the character of jobs, the location of and need for work and the need for expertise. Robotisation and digitalisation will have a radical impact on jobs over the next twenty years.

Technological development after the publication of the TuV9/2013 report and needs for improvement related to reporting:

3D printing of goods (2.56) **

The number of 3D printers and revenue from the business have multiplied since the publication of the previous report. Large players, such as Hewlett-Packard and Canon, are about to launch important products in the market. Methods are being developed faster, and the new printing methods are radically faster and more precise than their predecessors. The quality of the produced goods has also improved. The aviation industry is adopting 3D printing as a production method; the first mainly 3D-printed automobile is about to be launched; and high-quality optics have been 3D-printed successfully. 3D printing is rapidly evolving from a production method for prototypes and peculiarities into a commercial production method. The market is predicted to multiply by the beginning of 2020. Recommendation: retain.

Technology links after September 2013

<table>
<thead>
<tr>
<th>Technology</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D-printed car</td>
<td>https://t.co/jkM47ycKTC</td>
</tr>
<tr>
<td>Quick 3D-printing</td>
<td>http://wpo.st/Tf990</td>
</tr>
<tr>
<td>Technology links after September 2013</td>
<td></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td></td>
</tr>
<tr>
<td>3D-printing – market forecast 2020</td>
<td></td>
</tr>
<tr>
<td>Improvement of metal printing – 10-fold speed</td>
<td></td>
</tr>
<tr>
<td>http://3dprint.com/116276/nvbots-launches-nvlabs/</td>
<td></td>
</tr>
<tr>
<td>3D-printed lenses</td>
<td></td>
</tr>
<tr>
<td>Close manufacturing/Adidas</td>
<td></td>
</tr>
<tr>
<td>http://www.reuters.com/article/2015/10/20/us-adidas-robots-idUSKCN0SE1RL20151020</td>
<td></td>
</tr>
<tr>
<td>3D-printing of ceramics (strong, precise)</td>
<td></td>
</tr>
<tr>
<td>3D-printed graphene</td>
<td></td>
</tr>
<tr>
<td>3D-printing of an electronic device</td>
<td></td>
</tr>
<tr>
<td>http://www.geek.com/chips/voxel8-3d-printer-can-print-a-complete-quadcopter-including-the-electronics-1613166/</td>
<td></td>
</tr>
<tr>
<td>HP MJF 3D-printer</td>
<td></td>
</tr>
<tr>
<td>Growth of the 3D-printer market</td>
<td></td>
</tr>
<tr>
<td>http://usfinancepost.com/3d-printer-market-is-about-go-grow-tenfold-in-next-four-years-11511.html</td>
<td></td>
</tr>
<tr>
<td>Miniaturisation of hydraulics (robot) through 3D-printing</td>
<td></td>
</tr>
<tr>
<td>3D-printing of lenses</td>
<td></td>
</tr>
<tr>
<td>3D-printing of cars</td>
<td></td>
</tr>
<tr>
<td>http://www.wired.com/autopia/2014/03/edag-3-d-printed-car/?mbid=social_twitter</td>
<td></td>
</tr>
<tr>
<td>3D-printed carbon fibre cast</td>
<td></td>
</tr>
<tr>
<td>3D-colour coating method</td>
<td></td>
</tr>
<tr>
<td>Inexpensive SLS laser on the basis of open-source code</td>
<td></td>
</tr>
<tr>
<td>http://www.eurekalert.org/pub_releases/2016-02/rmic022116.php</td>
<td></td>
</tr>
</tbody>
</table>

**3D printing of buildings (2.57) **

Chinese Winsun has printed the concrete elements for an apartment building. Finnish Fimatec has introduced the first 3D-printed prefabricated wall unit that includes, in addition to the concrete exterior and interior walls, concrete reinforcement and insulation. A steel bridge has been 3D-printed without support structures under the bridge being printed or the printing robots. Sculptural interior of a room has been 3D printed. The printing of buildings is in the experimental stage, and this area can be expected to develop rather quickly. Recommendation: retain, change the name to 3D-printing of buildings and structures.
Sensitive robot fingers and hands capable of remote work (2.61) ***

Sense of touch-enabling materials have advanced so that it is possible to equip robot fingers and prostheses with a sense of touch that is more sensitive than the human finger. Flexible materials for robot hands have been tested. Robot hands have been developed into prostheses that can be controlled by thoughts, or nerves from the arm can be connected to them. The sense of touch of separate robot hands used for remote work can also be connected to be sensed by humans. Instruments have been developed for remote controlling of robot hands that recognise the exact position of the human hand and pass the sense of touch from robot fingers to human fingers. Cooking with robot hands installed in the kitchen has been demonstrated very convincingly, using cooking methods and utensils that humans use. Recommendation: retain.
Robo-tailoring (2.62) *

As regards robo-tailoring plans, only the imaging of the human body, that is, automatic measuring, is currently becoming reality. Fitting rooms that measure the body and prepare a 3D model for the sewing of clothes are coming to the market. Robotised manufacture of accessories according to the customer's individual measurements has progressed for shoes, according to the reports from Adidas. However, there are no reports available on the progress of robo-tailoring in the making of clothes. Thus, the progress is not as fast as expected. Recommendation: remove.

(new) New methods for transferring goods/materials (2.106)

In industrial manufacturing, components or materials are transferred between locations. Transfer methods have changed very rarely. However, inventions such as the assembly line had a great impact on manufacturing processes and even the products themselves. It has been found that material and objects can be transferred using sound waves. On the other hand, shapeshifting surfaces have been successfully developed, and they can move objects. A water-based 'tractor beam' has been created. A modular table surface is more flexible than a conveyor belt, transferring objects in two dimensions in a precise manner. The use of quadcopters equipped with cables for the assembly and picking of goods could possibly also be included in this group. Recommendation: describe a new category for transfer related to the manufacture and picking of goods.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shapeshifting surface</td>
</tr>
</tbody>
</table>

(new) Robotic manufacturing/service (2.107)

Service robotics are expected to grow faster than other robotics. Industrial robotics are also becoming more flexible. In the future, it may be difficult to distinguish between industrial and service robotics, if this flexibility means that the manufacture of goods is transferred from the industrial sector to the service sector. In the field of robotics, studies have been conducted on self-assembling robots, waste sorting robots, robotic parking systems, robotic cooks, robotic waiters and a number of other robots related to services
and manufacturing. Recommendation: One or two new categories should be established in the field of robotic manufacturing and services.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof trusses made by robots</td>
</tr>
<tr>
<td>Self-repair techniques for robots</td>
</tr>
</tbody>
</table>

(new) Ubique environment (IOT) (2.108)

The built environment is becoming increasingly intelligent and interactive. The IOT development is mainly the development of the intelligence immersed in our environment. An example is on-demand street lighting. Recommendation: identify one important technology in this domain, such as NFC, the spreading of which will have a significant impact.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Street lighting on demand</td>
</tr>
<tr>
<td>NFC-based user interface (IOT?)</td>
</tr>
<tr>
<td>Inexpensive IOT controller</td>
</tr>
<tr>
<td>Paper surface with artificial sensory functions</td>
</tr>
</tbody>
</table>
7.6 Material technology

At the research level, the development of nanotechnology is fast. Nanomaterials have been launched in the market in the form of various coatings that make surfaces frictionless, dirt-repellent or electronically and optically active. Many nanomaterials can also now be produced as three-dimensional structures and so cost-efficiently that they can be used for purposes that require mechanical strength or other special characteristics. Nanomaterials are also used as composites.

In the future, the new materials will have a substantial impact on electronics, optics, electromechanics and other mechanics, construction, chemical and biological processes and a vast number of product features. As a result of the great change in material technology, industry will have to modify its processes, product design and product characteristics. According to preliminary estimates, the change in goods manufacturing will be as remarkable as the change that resulted from the advent of iron or plastics.

Technological development after the publication of the TuV9/2013 report and needs for improvement related to reporting:

Magnetic or superconductor based levitation (2.50) *

Technology related to magnetic locking and levitation achieved through superconductors has not progressed very much after the previous report. The low temperature associated with superconductors continues to be a problem. Even though there has been news about lithium-coated graphene that works like a superconductor, other than nanoscale applications have not been speculated for this. Recommendation: incorporate in item 2.79.

3D and 4D printing of material (2.58) **

3D printing of pharmaceuticals and food has progressed. Electronically and optically as well as chemically active material structures have been printed. Shapeshifting materials have been printed, and printing techniques that can mix different materials during printing have been introduced. The progress has been relatively fast. Recommendation: retain.
Technology links after September 2013

<table>
<thead>
<tr>
<th>Topic</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nano-level printing of graphene structures</td>
<td>http://3dprint.com/27324/graphene-nano-3d-print/</td>
</tr>
</tbody>
</table>

Nanosurfaces that convert air moisture to water (2.63) *

New methods are continuously being developed for the purification of water to make it drinkable or usable for cultivation, as well as methods for collecting water from air moisture. The fastest-progressing methods have been condensation and separation methods that use electricity. Recommendation: change the name to Production of fresh water from air moisture and salty/dirty water.

Technology links after September 2013

<table>
<thead>
<tr>
<th>Topic</th>
<th>Link</th>
</tr>
</thead>
</table>

Artificial muscles (2.65) **

A sensitive, functional robotic hand has been fabricated from memory material that contracts as muscles. The functioning of shape-memory materials, or artificial muscle materials, is based on moisture, heat, electric current, etc. Shape-memory metal has been tested to endure millions of transformations. Artificial muscles may be a hundred or even a thousand times stronger than a human myofibril of similar size. The development is relatively extensive and rapid. Recommendation: retain.
Artificial, self-renewing skin (2.66) *

After the publication of the previous report, at least two important self-healing materials have been found. Researchers at IBM have developed a polymer that is stronger than bone, recyclable, lightweight, corrosion-resistant and self-healing. Smithsonian has developed a material that heals itself quickly in an anoxic space. Recommendation: retain.

New building materials that replace reinforced concrete (2.73) *

This domain has progressed to some extent. Carbon-neutral cement is being developed at a number of locations, including Finland. Porous, water-permeable cement will probably find applications in buildings and the built-up environment. Quick-setting cement suitable for 3D printing, fibre-based steel-replacing reinforcement materials for tensile strength and new fillers are being developed. Recommendation: retain.
Antibacterial and other dirt repellent materials and surfaces (2.74) ****

Antibacterial and other dirt repellent surfaces are continuously being developed of nanomaterials. For example, nanocarbon coating has been found to prevent freezing of an aircraft’s wings. Self-cleaning, self-healing painted surface and the use of copper for antibacterial surfaces are research findings that have emerged after the publication of the previous report. Recommendation: retain.

Carbon nanotube yarn or thread (2.75) **

Great progress has been made in the spinning of carbon nanofibres. In practice, however, the fibres are still far from the strength enabled by the theoretical structure of graphene and carbon nanotubes, and they are still lagging behind conventional carbon fibres. Furthermore, despite their rapid development, the production methods are still expensive. However, it seems evident that as techniques evolve, nanocarbons will surpass carbon fibres and many other materials in many applications, just as they should in theory. Other strong fibres are being developed on the basis of spider webs, etc. However, practical applications will not be seen for some time yet. Recommendation: retain, change the name to Nanomaterials as strong fibres and reinforcement materials in composites.
Technology links after September 2013

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
<th>Link</th>
</tr>
</thead>
</table>

Nanocarbons in salt or bacteria removal and other separation techniques based on nanocarbons (2.76) *

Nanocarbons are becoming increasingly promising materials in separation technology. In water purification, there is promise of less rapid filter blocking and lower need for energy. Compared with conventional techniques, the separation accuracy of nanocarbons is often much better. Graphene has been successfully tested for the filtering of nuclear waste and the filtering of different gases. Researchers have succeeded in developing a diode for the separation of fluids; part of the fluid is flowing only in one direction. Recommendation: change the heading to New separation techniques and move the section on water purification to item 2.63.
Nanocarbon as a reinforcement or functional surface (2.77) **

Nanocarbons have been tested as reinforcement material, conductivity enhancers and surfaces that prevent corrosion or ice. Nanocarbons are already in use in applications such as touch screens. The category is scattered and partially overlapping with other domains. Recommendation: remove, incorporate the reinforcement aspect in item 2.75.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon improves the insulation of conductors</td>
</tr>
</tbody>
</table>

Materials that levitate on nanolevel (2.79) *

Better understanding of nanolevel phenomena and improved simulation models have resulted in considerable progress in the area of frictionless surfaces. Acoustic levitation, increasingly inexpensive magnetic levitation solutions and frictionless surfaces provide a potential solution for many problems related to machines, surfaces of the built-up environment and measuring devices. Recommendation: retain, extend the heading to Frictionless materials and levitation.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frictionless surface</td>
</tr>
</tbody>
</table>
Ultralight and strong materials (2.80) ***

Aerogels are the lightest strong materials known, even lighter than air. Their production techniques have improved. Aerogels have been found to be excellent insulators in layers that are one order of magnitude thinner than conventional insulation materials. Moreover, ultralight and strong materials enable the development of new, more energy-efficient flying or floating devices. For example, aluminium foam has been produced that is lighter than water and strong enough to be used for the main body of a ship. A material that is twice as strong as steel in proportion to weight has been developed of magnesium alloy. Carbon fibre can now be 3D printed and cured with electricity. Welded joints have been made essentially stronger than before, enabling lighter steel structures. A strong glue bond has been developed for metals. It is considered possible to build a 20 kilometres high tower using the new materials. Access to space would be essentially less expensive from the top of such tower. This domain has developed very fast. Recommendation: retain.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light and strong magnesium alloy</td>
</tr>
<tr>
<td>Strong welded joint</td>
</tr>
<tr>
<td>Lightweight metal foams</td>
</tr>
<tr>
<td>Aerogel as thermal insulation material</td>
</tr>
<tr>
<td>Strong aluminium foam</td>
</tr>
<tr>
<td>Floating metal foam</td>
</tr>
<tr>
<td>Lightweight and strong materials</td>
</tr>
<tr>
<td>Strong and light lattice structure through pyrolysis</td>
</tr>
<tr>
<td>3D printable aerogel</td>
</tr>
<tr>
<td>20 km high tower</td>
</tr>
<tr>
<td>Titanium strength at 1/10 of the price</td>
</tr>
</tbody>
</table>

Spray-on textiles (2.81) **

Fabrican is still the only possessor of the technology. Recommendation: remove, due to slow progress.
Nanocarbons have been found to possess dozens of very exceptional characteristics. These characteristics are associated with the nanostructures of materials; the size of uniform surfaces; the integrity of strands or faultlessness of the surface; and possible blend components, laminates and other molecules joined to the surface. AMI has increased its graphene production to a thousand tons. The price of a flawless graphene crystal is falling rapidly, which enables producing larger touchscreen surfaces using graphene. High-quality graphene is produced by treating inexpensive plastic with a laser beam, using the so-called LIG method. Production methods are developing rapidly. In addition to new characteristics, they make the use of nanocarbons in an increasing number of applications financially realistic. Recommendation: add nanocarbon production methods as a new area to be monitored.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Price of flawless graphene crystal falls</td>
<td>http://nextbigfuture.com/2015/01/price-of-flawless-graphene-will-be.html</td>
</tr>
<tr>
<td>Very affordable graphene</td>
<td>http://delta.tudelft.nl/article/making-graphene-affordable/29377</td>
</tr>
<tr>
<td>Graphene production in China</td>
<td>http://english.eastday.com/e/131226/u1a7852709.html</td>
</tr>
<tr>
<td>Faultless graphene surfaces for displays from Samsung</td>
<td>http://androidcommunity.com/samsung-producing-graphene-the-material-for-flexible-displays-20140404/</td>
</tr>
<tr>
<td>AMI’s graphene production to reach 1,000 tons in 2016</td>
<td>http://www.nanotech-now.com/news.cgi?story_id=52605</td>
</tr>
</tbody>
</table>
A collection of material technology breakthroughs that need to be categorised (2.500)

Material technology is progressing rapidly. New opportunities become available in the fields of physics, chemistry and biology. Recommendation: identify one new category, possibly relating to clothing or wearable electronics.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nanometal process VTT</td>
<td>http://www.tekniikkatalous.fi/innovaatiot/3+000+grammaa+pavassa++vtt+puskee+metallinnanohiukkasia/a1053682</td>
</tr>
<tr>
<td>Goods from biomaterials</td>
<td>http://www.hs.fi/tiede/a1398344570326</td>
</tr>
</tbody>
</table>
Technology links after September 2013

<table>
<thead>
<tr>
<th>Technology</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unipolar magnet</td>
<td>http://yle.fi/uutiset/suomalaistutkija_loysi_kauan_etsityn_yksin_apaisen_magneetin/7059297</td>
</tr>
<tr>
<td>Carbyne – the toughest material</td>
<td>http://gajitz.com/the-tough-polyyne-family-has-a-new-heavyweight-champ/</td>
</tr>
</tbody>
</table>

7.7 Biotechnology and pharmacology

Gene manipulation has become substantially more accurate and easier than before. The change after the publication of the TuVRad9/2013 report has been radical. This, and the massive increase in genetic information as a result of continuously easier sequencing impact drug development and biotechnology alike.

Genetic information-based medication is more accurate than before. On the other hand, medicines will be much easier to produce in the future. Radical opportunities may be associated with the possible solving of the mystery of aging and considerable extension of healthy lifetime, but also with the revealing of causes of serious illnesses and discovery of new treatments. For example, the use of RNA-silencing for medication opens up completely new treatment options. Control of the body’s own mechanisms, such as the immune system, offers many efficient means for health care.

Considerable advances have been seen in the regrowth of organs and cell cultivation, as well as the development of prostheses that restore the functional ability of the body. The production of biomaterials and food have also advanced substantially.

Technological development after the publication of the TuV9/2013 report and needs for improvement related to reporting:
Drugs based on genetically modified organisms (2.4) ***

Genetic manipulation has been successfully applied to produce a virus that kills cancer. Cancer and HIV have been arrested with gene therapy and modification of the immune system of the body. Stem cell therapy has been successfully used for treatment of Parkinson’s disease. Gene-manipulated bacteria have produced drugs. Six-letter DNA successfully replicated. It can be used for developing artificial life, the features of which are not transferred to nature. News about solutions related to genetic information and gene manipulation are increasing at an accelerating rate. Recommendation: change the name of the category to Drugs, organs and other materials enabled by gene manipulation.

Technology links after September 2013

<table>
<thead>
<tr>
<th>Subject</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-CD47 cancer treatment to begin human testing</td>
<td>http://blog.planprescriber.com/2014/03/28/anti-cd47-cancer-drug/</td>
</tr>
<tr>
<td>Gene therapy to treat cancer</td>
<td>http://www.cell.com/cell/fulltext/50092-8674%2815%2900623-6</td>
</tr>
<tr>
<td>Generic flu vaccine</td>
<td>http://www.bbc.co.uk/news/health-24175030</td>
</tr>
</tbody>
</table>

Nanorobots (nanobots) in health promotion (2.5) *

Swallowed capsules or capsules that travel in the blood vessels are developing fast. A pill camera that uses energy from the body; motorised nanoscale robots that move inside a cell; nanolevel medicine administration inside the body; remote-controlled and biodegradable medicinal implants and other remote-controlled subcutaneous medicine chips; nanobots that look for cancer; and activation of a paralysed limb with neuroimplants are all news that were published after the previous report.
Recommendation: retain, but extend the heading to Nanoparticles and microbots in the body.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rice grain-sized biodegradable sensor for the brain</td>
</tr>
<tr>
<td>Nanosensors for the body</td>
</tr>
<tr>
<td>Robotic dive into the cell</td>
</tr>
<tr>
<td>Controlling nanobots in the body with magnets</td>
</tr>
<tr>
<td>Faster growth through radiation</td>
</tr>
<tr>
<td>Rice grain-sized microbattery for biotelemetry</td>
</tr>
<tr>
<td>Pill camera, Smithsonian</td>
</tr>
<tr>
<td>Nanobot micromotors deliver medicine into the body of mice</td>
</tr>
</tbody>
</table>
Longer lifetime and slower aging processes (2.6) **

Using a number of techniques, the healthy lifespan of mice has been extended by approximately 30%. For example, the blood of a young mouse rejuvenates an old mouse. Many proteins used for signaling between cells and organs seem to affect the lifespan, as well as more efficient elimination of old cells. Aging-related symptoms in the skin, muscles and heart have been relieved and the aging process has been slowed down. As regards the brain, even memory diseases have been cured in tests related to the extending the lifespan in mice, using a number of different techniques. First tests on humans have started. An on/off switch has been found in telomerase. New companies, funded by considerable investments and manned by experienced researchers, have evolved around this topic. Recommendation: retain.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young blood rejuvenates the brain of old mice</td>
</tr>
<tr>
<td>Mitochondrial manipulation to slow down the aging of hepatic cells</td>
</tr>
<tr>
<td>Promotion of longevity</td>
</tr>
<tr>
<td>Genetics of aging</td>
</tr>
</tbody>
</table>
Inside brain implants that restore or develop brain functions (2.8)

Implants for the brain have been developed in many ways. A biologically compatible connection to the nervous system can be established with graphene. Neuroprostheses have been used for treatment. A connection between the brain and the immune system has been found. Eye implants have been tested and they are being developed. An infrared retina implant is under development. Electromagnetic methods external to the brain have been used to successfully influence the brain. Investigation into the question of coding of memory and development of memory implants has made some breakthroughs. The progress is fast. Recommendation: retain.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nanobots for the body</td>
</tr>
<tr>
<td>Neuroprostheses repair neurological disorders</td>
</tr>
<tr>
<td>Retinal prosthesis</td>
</tr>
<tr>
<td>Connection between the brain and the immune system</td>
</tr>
<tr>
<td>Memory coding and memory implants</td>
</tr>
</tbody>
</table>

Drugs that prevent dementia (2.9)**

Researchers have developed a method that cures 70% of Alzheimer’s cases in mice. The KLOTHO gene that protects against dementia has been identified. The significance of amyloid and tau protein in the mechanism of Alzheimer’s have been investigated. Research is progressing rather rapidly. Recommendation: retain, but change to Prevention of dementia and alleviation of symptoms.
Susceptibility to dementia

KLOTHO

70% of Alzheimer’s cases in mice were cured

Review of Alzheimer’s research

http://www.alz.org/research/science/alzheimers_treatment_horizon.asp

Alzheimer’s research tau vs. amyloid

Alzheimer’s research

http://www.nature.com/ncomms/2015/151127/ncomms9836/full/ncomms9836.html

KLOTHO gene protects against Alzheimer’s and improves intelligence

https://www.ucsf.edu/news/2014/05/114196/better-cognition-seen-gene-variant

Gene protects against Alzheimer’s

http://www.ucsf.edu/news/2014/05/114196/better-cognition-seen-gene-variant

Repairing and regrowing of human organs, (stem) cell cultivation (2.10) **

Technology suitable for dental stem cell implants has been developed. An efficient method has been developed for the production of blood from stem cells. Sixty genes of pig have been modified so that pig’s organs can be used for organ transplantations. Regeneration of the nervous system has succeeded. The immune system has been ‘trained’ to cure celiac disease. A kidney has been grown and a number of other organs have been 3D printed. This is a rapidly developing domain. Recommendation: retain.

The body is independently destroying cancer

http://yle.fi/uutiset/syopahoito_on_mullistumassa__elimisto_voi_itse_tuhota_syopakasvaimia/8321028

Dental stem cell implants

Large quantities of insulin-producing cells have been cultivated

Lab-grown kidney

Review of growing of artificial organs

http://discovermagazine.com/2014/jan-feb/05-stem-cell-future

Regeneration of the nervous system

‘Training’ the immune system

Cultivated cardiac cells

http://www.sciencedaily.com/releases/2015/07/150714124129.htm
Technology links after September 2013

<table>
<thead>
<tr>
<th>Technology</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artificial blood from factories</td>
<td>http://www.telegraph.co.uk/health/healthnews/10765132/Artificial-blood-will-be-manufactured-in-factories.html</td>
</tr>
<tr>
<td>Type 1 diabetes treated with cultivated stem cells</td>
<td>http://gizmodo.com/stem-cell-breakthroughcould-put-an-end-to-daily-insulin-1754981810</td>
</tr>
<tr>
<td>Obstacles for human spare parts in Finland</td>
<td>http://yle.fi/uutiset/tutkijat_selvittavat_ihmisen_varaosateiden_synnyn_esteita_suomessa/7144293</td>
</tr>
<tr>
<td>3D-printing of blood vessels</td>
<td>http://www.iflscience.com/health-and-medicine/scientists-use-3d-printing-produce-blood-vessels</td>
</tr>
<tr>
<td>Modification of immune system put 90% of terminally ill leukaemia patients into remission</td>
<td>http://www.bbc.com/news/health-35586834</td>
</tr>
</tbody>
</table>

Synthetic cartilage in human joints (2.11) *

3D printing of cartilage has advanced. In addition, experiments with cartilage prosthesis produced from synthetic plastic material have progressed to testing in patients. Recommendation: due to overlap, incorporate in items 2.11 and 2.59 as applicable.

Technology links after September 2013

<table>
<thead>
<tr>
<th>Technology</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artificial 3D printed cartilage</td>
<td>http://www.iflscience.com/health-and-medicine/made-order-cartilage-could-combat-osteoarthritis</td>
</tr>
<tr>
<td>3D printed cartilage</td>
<td>http://www.iflscience.com/health-and-medicine/made-order-cartilage-could-combat-osteoarthritis</td>
</tr>
</tbody>
</table>
3D printing of organs (2.59)*

3D printing of organs has advanced rapidly. 3D printers specialising in the printing of biomaterials have been launched in the market. Many organs have been printed experimentally. The functionality of 3D-printouts of bone, cartilage, joints, skin, liver, kidneys, bladder, blood vessel and nervous system has improved. Recommendation: retain.

Technology links after September 2013

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D printed organs http://yle.fi/uutiset/japanilaistutkijat_tuottavat_ruumiinosia_3d-tulostimella/7742395</td>
</tr>
<tr>
<td>3D printing of organs: blood vessels https://www.facebook.com/StemCellAndRegenerativeScience/posts/234949486711227</td>
</tr>
<tr>
<td>Biomaterial that grows and changes shape http://www.eurekalert.org/pub_releases/2015-09/qmuo-smt092415.php</td>
</tr>
<tr>
<td>3D printing of bone and tissue http://3dprint.com/37745/bone-and-tissue-bioprinting/</td>
</tr>
<tr>
<td>3D printed heart in 10 years http://www.wired.co.uk/news/archive/2013-11/21/3d-printed-whole-heart</td>
</tr>
<tr>
<td>3D printing to produce tissue constructs with structural integrity http://www.nature.com/nbt/journal/vaop/ncurrent/full/nbt.3413.html</td>
</tr>
<tr>
<td>Mini-brains for testing purposes http://hub.jhu.edu/2016/02/12/mini-brains-drug-testing</td>
</tr>
</tbody>
</table>

**Robotic surgery and other cutting of biological objects (2.60) **

A robot has been developed that can draw blood successfully. A surgical microscope has been developed. It is used in cancer surgery to examine if cancer cells have been successfully removed from the surgical site. Robotic surgery is routinely used in many operations. The progress does not seem very fast, with the exception of the food industry. Recommendation: remove.

Technology links after September 2013

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
</table>
**Biobots (2.64) * **

A cockroach has been harnessed with sensors, and a cockroach carrying a miniaturised camera can be remote-controlled at a tolerable accuracy. Electric wires and electronics have been absorbed in living plants, including a transistor and logic circuit. Recommendation: remove as a slowly progressing domain with limited significance, or incorporate under 2.8 as Cyborg-like combinations of electronics and biological organisms.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronics in cyborg plant</td>
</tr>
</tbody>
</table>

Artificial cell and simulating life on cell level (2.68) *

The functions of a cell can be simulated with software. However, simulation of human cells at a level that would be useful for drug testing is not yet possible. It is estimated that this goal could be reached by 2025. Artificial cells have been produced for a variety of purposes. For example, researchers have created a cell that they believe is similar to early prehistoric cells, and it has proliferated independently. Recommendation: retain.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
</table>

**In-vitro meat and meat-like plant protein (2.69) * **

The production process of synthetically grown meat has improved, and the production costs have fallen rapidly. However, commercial profitability is not yet in sight. The quality of plant-based imitation eggs is now equal to real eggs. It has been found that roots of leguminous plants contain an ingredient that gives blood aroma to plant-based imitation meat. Imitation meat has received considerable funding and is going commercial. Recommendation: retain.
Genetically modified organisms as producers of multi-use materials (2.71) ***

Genetic modification is becoming routine, thanks to the new Crispr-Cas9 method. One complete yeast chromosome has been produced synthetically and reimplanted in yeast, after which it has propagated. Genetically modified bacteria have been used for producing biofilm and nanoscale electric wires for the biofilm, assembled of gold particles. A self-luminous, seeding plant has been created through genetic modification. Recommendation: retain.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity-'eating' bacterium</td>
</tr>
</tbody>
</table>

Cellulose nanofibre and microfibre (2.78) ****

There have not been many news on nanocellulose. A recent market analysis anticipates over 20% growth and a market of nearly EUR 300 million by 2020. The development has been slower than anticipated, even though the theoretical potential of nanocellulose is very high. Despite the slow progress, this area is significant for Finland. Recommendation: retain.
Inexpensive nanocellulose production method

Nanocellulose applications (VTT)

Nanocellulose design

Small but growing market for nanocellulose

LED cultivation has been in the headlines after the publication of the TuVRad9/2013 report. In Japan, a plantation has been established in an industrial hall, producing 10,000 heads of lettuce per day. Other similar, fully robotised facilities are about to be launched. In Finland, Silmusalaatti has started LED cultivation. The advantages of artificial light cultivation are minimisation of heating costs, plant diseases, evaporation, fertiliser emissions, area costs and logistics costs and maximum length of the growing season. The main disadvantage is the energy cost associated with artificial light. This is reduced by lighting the surface of the plant only and using only the wavelengths and light intensity that the plant needs. Container-sized automatic plantations and cultivation devices intended for households have rapidly appeared in the market. Recommendation: new category

Commercialised container cultivation, EUR 20,000/year
https://www.facebook.com/HuffingtonPost/videos/10153593374106130/

MIT invests in LED/vertical cultivation

LED cultivation at Silmusalaatti
http://www.hs.fi/tiede/a1439520997977?jako=65a7ada6a9f2a41fd8d132dbdfb3863e&ref=tw-share

LED cultivation in Finland
http://www.silmusalaatti.fi/viljely/

LED multi-layer cultivation (Japan)
http://upriser.com/posts/largest-indoor-farm-100x-more-productive-99-less-water-40-less-power-80-less-waste

Product of LED/container cultivation
https://www.facebook.com/HuffingtonPost/videos/10153593374106130/?ref=nf

Kitchen cultivation product
http://www.kauppalehti.fi/omayritys/suomalainen+alypuutarha+levi+ja+saksassa/201412711806

Critical (incompletely) view to vertical cultivation
https://usu.app.box.com/s/6t2qfa3xng2bb4rpa2536lg4yrqf4sug

Cultivation experiment on the Moon
http://newswatch.nationalgeographic.com/2013/12/05/nasa-may-test-its-lunar-green-thumb/

LED cultivation (Philips)
http://www.fastcoexist.com/3048492/in-this-huge-urban-farming-lab-led-recipes-grow-juicier-tomatoes-and-sweeter-basil
Technology links after September 2013

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grasshoppers grown in containers</td>
</tr>
<tr>
<td>http://www.kauppalehti.fi/uutiset/tama-keksinto-ratkaisee-nalanhanadan-maailmasta/3ESU7BiR</td>
</tr>
<tr>
<td>Vertical cultivation</td>
</tr>
<tr>
<td>Indoor cultivation, hemp</td>
</tr>
<tr>
<td>Urban/multilayer cultivation</td>
</tr>
<tr>
<td>http://weburbanist.com/2015/04/02/plantlab-urban-farms-40-times-more-productive-than-open-fields/</td>
</tr>
<tr>
<td>Lighting and milk production</td>
</tr>
<tr>
<td>http://www.nyteknik.se/nyheter/energi_miljo/article3933600.ece</td>
</tr>
<tr>
<td>Vertical cultivation</td>
</tr>
<tr>
<td>http://www.youtube.com/watch?v=2nFQOzkEjxQ</td>
</tr>
</tbody>
</table>

(new) Medicine – protein map (2.150)

Important development takes place in medicine all the time. This is a general code related to the topic, including a collection of recent examples without a particular theme: Faster methods have been developed for vaccine manufacturing. Some antibiotic treatments can be replaced with electric treatment; graphene has shown anticancer potential; an antibiotic that kills MRSA has been found; liposomes can be used for treating bacterial infections; a comprehensive map of human proteins has been prepared; surgical results in emergencies can possibly be improved by cooling trauma patients and suspended animation; malaria vaccine is being tested in mice; a cholesterol vaccine has been developed; and UV-LED light has a disinfecting effect. Recommendation: review the category and consider if it should be made into a new monitored category.

Technology links after September 2013

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Protein Atlas</td>
</tr>
<tr>
<td>http://yle.fi/uutiset/ruotsalaiset_piirsivat_ihmisen_proteiinin_artaston__13_miljoonaa_kuvaa_julki_internetissa/7606422</td>
</tr>
<tr>
<td>UV LED for disinfection</td>
</tr>
<tr>
<td>http://www.savonsanomat.fi/uutiset/talous/led-suutari-sai-kansainvalisen-laatupalkin-non/1971147?pwbi=d845cd2b75ec522f8b82403277f0555b</td>
</tr>
<tr>
<td>Suspended animation to be tested on humans</td>
</tr>
<tr>
<td>Cooling of trauma patients (hibernation)</td>
</tr>
<tr>
<td>Getting bacteria under control with liposomes</td>
</tr>
<tr>
<td>http://www.teknikkatalous.fi/innovaatiot/rasvalla+tulehdusteni+kimppuun+antibioottien+sijaan++kokeet+ihmispotilailla+aikavat+ensivaunua/a1027451</td>
</tr>
<tr>
<td>Cholesterol vaccine</td>
</tr>
<tr>
<td>http://news.unm.edu/news/unm-nih-researchers-develop-vaccine-to-treat-high-cholesterol</td>
</tr>
<tr>
<td>Health effects of spruce resin</td>
</tr>
</tbody>
</table>
Technology links after September 2013

<table>
<thead>
<tr>
<th>Technology links</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphene with anticancer potential</td>
<td>http://www.medicalnewstoday.com/articles/289978.php</td>
</tr>
<tr>
<td>Antibiotic that works on MRSA</td>
<td>http://yle.fi/uutiset/tutkijat_uskovat_loytaneensa_mullistavan_antiabootiin_oli_kavettuna_maahan_takaphalle/7724435</td>
</tr>
<tr>
<td>Malaria vaccine tested in mice</td>
<td>http://news.sciencemag.org/health/2014/05/new-malaria-vaccine-shows-promise-mice</td>
</tr>
<tr>
<td>Rabbit’s brain frozen without breaking the structure</td>
<td>http://www.sciencenews.com/a-mammal-s-brain-has-been-cryonically-frozen-and-recovered-for-the-first-time</td>
</tr>
</tbody>
</table>

7.8 Energy technology

Energy technology is developing quickly. Commercialisation of solar power is a significant trend in many countries. Considering the development of battery technology and fuel cells, it is anticipated that, for example, in Australia profitable withdrawal from the grid will be possible for half of the households by 2020.

The growing use of solar power and wind power will increase energy price fluctuations. Decentralised energy production for personal need reduces the use of transmission network, at the same time increasing the unit cost of the transmission of electricity. Increasing price fluctuations will improve the profitability of energy storages and, particularly in northern conditions, increases the importance of heat storages.

The development of battery technology promotes the electrification of transport. Electrification of aviation is also in sight. The development of fuel cells and production of synthetic fuels with solar and wind power provide the opportunity to benefit from solar and wind power during all seasons, also in northern conditions.

Technological development after the publication of the TuV9/2013 report and needs for improvement related to reporting:

Rapidly cheapening solar energy (2.82) ****

The price of installed solar energy systems has decreased over the long term by 7–15% per year. According to studies, the decreasing price trend may still continue for a long time. Using thin-film technology, solar panels can be made flexible, light and easy to integrate into other structures. In the future, they will require less and less materials that are expensive. Thin-film technology can surpass the performance of conventional
technology already in 2017. Solar panels are being planned to use for covering roads, building walls and, with translucent panels, also windows. It has been calculated that in many countries, solar energy has already surpassed the grid parity, and repayment periods are continuously becoming shorter. Solar energy investments are continuously increasing at the global level. Recommendation: retain.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jobs in solar power industry</td>
</tr>
<tr>
<td>Solar power captured and projected to Earth</td>
</tr>
<tr>
<td>Solar panel road</td>
</tr>
<tr>
<td>Rooftop solar power becoming cheaper</td>
</tr>
<tr>
<td>Transparent solar panel to turn windows into solar power generators.</td>
</tr>
<tr>
<td>Solar panel road</td>
</tr>
<tr>
<td>Solar cell that stores power</td>
</tr>
<tr>
<td>DIY solar panel</td>
</tr>
<tr>
<td>Investment in oil vs. PV</td>
</tr>
</tbody>
</table>
Efficient and light solar panels (2.83) **

The efficiency of solar panels has increased significantly. The development has been fastest in thin films. The efficiency of commercially available thin films has increased from 5% to 14%. In the laboratory, thin films have achieved over 20% efficiency. Solar panels based on combination methods have reached over 40% efficiency in the laboratory. However, thin film technology does not yet promise such performance. Light and efficient solar panels are needed for applications such as flying devices running on solar power and the production of tents and other foldable and portable solar power-producing surfaces. As the efficiency is improving and costs falling, the market share of thin film technology is expected to increase to a significant level also in fixed solar panel installations. Recommendation: incorporate in item 2.82.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transparent solar panel</td>
</tr>
<tr>
<td>Valoe: 40-year guarantee for solar panels</td>
</tr>
<tr>
<td>Solar panel road being tested</td>
</tr>
<tr>
<td>Solar power in Finland in 2050</td>
</tr>
<tr>
<td>Solar power integrated into tin roof</td>
</tr>
<tr>
<td>Sun Power PV 22.8%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar panels printed on rolls</td>
</tr>
<tr>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Solar power with 34% efficiency</td>
</tr>
<tr>
<td>Rectenna: Electricity from light</td>
</tr>
<tr>
<td>Flexible graphene PV 15.6%</td>
</tr>
<tr>
<td>PV record with silicon cells</td>
</tr>
<tr>
<td>Graphene for PV surface</td>
</tr>
<tr>
<td>CdTe solar cells are evolving</td>
</tr>
</tbody>
</table>

**Artificial leaf and synthetic fuel from the sun light and carbon dioxide (2.84) **

Over 20% efficiency has been reached in the conversion of solar energy into hydrogen. Hydrogen has been produced from electricity at over 80% efficiency, and in methane production, efficiency has exceeded 50%. Ethanol production through electrocatalysis is also being continuously developed, and over 50% Faraday efficiency has been achieved. All of these are substances that can easily be used in fuel cells. Investments in development are increasing, as methods for long-time storage of energy are becoming important. This is a result of increasing price fluctuations in the electricity market, induced by the use of solar and wind power. This domain is already developing fast. Recommendation: change the heading to Synthetic fuels
Technology links after September 2013

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
</table>

Production of biofuels using enzymes, bacteria or algae (2.85) **

A method has been found for propane production using genetically modified bacteria. Algae population has been induced to produce electricity. Recommendation: incorporate in item 2.84.

Technology links after September 2013

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.coli produces propane (Finland), etc.</td>
<td>http://www.utu.fi/fi/Ajankohtaista/Uutiset/Sivut/Mikrobit-saatin-tuottamaan-propaania.aspx</td>
</tr>
</tbody>
</table>
**Flying wind power and other new ways to produce wind energy (2.86) **

Wind spirals have continued to develop further. Kite energy has been developed applying a number of different principles. Google’s Makani has started testing a 600kW kite and is recruiting more employees at a fast pace. The principle of the convection power plant has been introduced. Recommendation: expand the category to include wave power plants and other kinetic energy.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen production</td>
</tr>
<tr>
<td>Algae become a source of electricity</td>
</tr>
<tr>
<td>GMO E.coli produces propane</td>
</tr>
<tr>
<td>http://www.theguardian.com/environment/2014/sep/02/propane-renewable-sources-ecoli-genes</td>
</tr>
</tbody>
</table>

- Ship sails on wind power
 - http://www.tekniikkatalous.fi/Liikenne/rahtialus+tuulen+valtaa+automaattiohjaus+loytaa+energiapiheimman+purjehdusreitin/1043105
- Wind power without blades
 - http://www.wired.com/2015/05/future-wind-turbines-no-blades/
- Quadcopter kite energy
 - http://www.skywindpower.com/
- Vertical wind power
- Windside wind spiral 100 m
 - http://yle.fi/uutiset/windside_virittelee_sadan_metrin_tuuliruuvia_valkeakoskelle/7989676
- Convection power plant
- Wave power plant test
- Electricity from flowing salt water

**Piezoelectrical energy sources, harvesting of kinetic energy (2.87) **

Ricoh has launched a rubber-like material that converts kinetic energy into electricity. Galfenol, an alloy of gallium and iron, can convert 70% of kinetic energy into electricity. Recommendation: incorporate in item 2.86, due to similarity.
Serial production of small nuclear reactors, fission and fusion (2.88) *

Fusion energy is being developed in many important, well-funded projects. New projects aim for small reactors, and their development cycle is estimated to be substantially faster compared with the development of large nuclear power plants. The scientific foundation of small fusion reactors has strengthened. Interest in thorium reactors has increased. LENR (cold fusion) keeps stirring discussion and the results of many independent groups are promising, but they do not meet the scientific criteria in terms of independence and transparency. Recommendation: retain.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rubber generates electricity from movement (Ricoh)</td>
</tr>
<tr>
<td>LENR critics</td>
</tr>
<tr>
<td>Thorium reactor</td>
</tr>
<tr>
<td>LENR Parkhomov</td>
</tr>
<tr>
<td>Fusion power W-7-X in operation</td>
</tr>
</tbody>
</table>
Rapidly charging light batteries and supercapacitors (2.89) ****

Battery technology has developed relatively fast, and researchers have published a lot of results of progress on a number of alternative paths of development. Researchers have developed many methods that can significantly improve the energy density, charging speed and durability of lithium ion batteries. A lithium-air battery is under development, and its power/weight ratio is estimated to equal that of liquid fuels. The development is still in an early stage. The energy density of a lithium-sulphur battery is tenfold compared with current LI batteries. So far, however, researchers have only been able to develop a version that can be charged 50 times. Supercapacitors are being developed out of cellulose and graphene. Their capacity is approaching that of current batteries, but the charging speed and number of recharges are higher by orders of magnitude. Recommendation: retain.
<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samsung Li battery improves by 50–80%</td>
</tr>
<tr>
<td>Li battery keeps itself warm in cold weather</td>
</tr>
<tr>
<td>Feasible sodium batteries</td>
</tr>
<tr>
<td>400 Wh/kg battery Bosch</td>
</tr>
<tr>
<td>Carbon nanotube supercapacitor</td>
</tr>
<tr>
<td>Flexible conductor of boron nitride</td>
</tr>
<tr>
<td>Supercapacitors made with cellulose</td>
</tr>
<tr>
<td>Higher energy density in lithium battery</td>
</tr>
<tr>
<td>Efficient sodium battery</td>
</tr>
<tr>
<td>$54/kWh polymer battery in the pipeline</td>
</tr>
<tr>
<td>Lithium-air battery under development</td>
</tr>
</tbody>
</table>

2.90 Massive storage of energy in high capacity batteries (2.90) ***

A number of battery solutions for load balancing in buildings and the grid have been launched in the market. In many cases, the competitiveness of batteries has surpassed gas turbines in daily balancing. In addition to Li batteries, there are batteries in the market that are based on inexpensive materials, such as zinc and salts. Flow batteries with easily expandable capacity are being developed, as well as batteries based on aluminium, sugars, paper and hemp. Recommendation: retain.
Technology links after September 2013

<table>
<thead>
<tr>
<th>Topic</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costs of energy storage down by 70% by 2030</td>
<td>https://www.worldenergy.org/publications/2016/e-storage-shifting-from-cost-to-value-2016/</td>
</tr>
<tr>
<td>Low-cost battery material</td>
<td>http://pubs.acs.org/doi/abs/10.1021/acscemater.5b03531?journalCode=cmatex&</td>
</tr>
<tr>
<td>Flux capacitor</td>
<td>http://advances.sciencemag.org/content/advances/1/9/e150605.full.pdf</td>
</tr>
<tr>
<td>Profitability of energy storage in the USA</td>
<td>http://www.greentechmedia.com/articles/read/battery-storage-pays-back-in-less-than-five-years-sc-finds</td>
</tr>
<tr>
<td>Tesla battery for houses</td>
<td>http://thenextweb.com/gadgets/2015/05/01/elontricity/</td>
</tr>
<tr>
<td>Aquion salt water battery</td>
<td>http://www.aquionenergy.com/grid-scale-batteries</td>
</tr>
<tr>
<td>Flow battery</td>
<td>http://jes.ecsdl.org/content/161/9/a1371.full?sid=e4be8ba7-839f-4669-9a85-5b9c42d73289</td>
</tr>
<tr>
<td>Market forecast for energy storage systems</td>
<td>http://cleantechnica.com/2014/06/09/solar-energy-storage-system-market-germany-approaching-boom/</td>
</tr>
<tr>
<td>Undersea energy storage</td>
<td>http://dspace.mit.edu/handle/1721.1/78934</td>
</tr>
<tr>
<td>Hemp as battery material</td>
<td>http://www.acs.org/content/acs/en/pressroom/newsreleases/2014/august/could-hemp-nanosheets-tople-graphene-for-making-the-ideal-supercapacitor.html</td>
</tr>
<tr>
<td>Flow battery EUR 240/kWh</td>
<td>https://cleantechnica.com/2014/12/01/us-navy-pushes-solar-energy-storage-solution/</td>
</tr>
<tr>
<td>Tesla’s Gigafactory $5 billion</td>
<td>http://www.batterynews.org/2014/02/27/tesla-open-5-billion-battery-factory-electric-cars/</td>
</tr>
</tbody>
</table>

Solar heat and long-term storage of heat (2.91) ***

A number of Finnish products and product concepts have been introduced for the capture and storage of solar heat, such as Polarsol, Solixi and Ahood. A geothermal power plant is
under construction in Espoo. IBM has introduced a sunlight collector; it converts 80% of the collected radiation into electricity, heat and clean water. Storage of solar heat is being studied on the basis of phase change. Solar heat storage solutions are about to be launched on the market, and solutions are developing quite rapidly. Recommendation: retain.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat capture AHOOD</td>
</tr>
<tr>
<td>Storage of solar heat, phase change</td>
</tr>
<tr>
<td>IBM 80% solar energy collector</td>
</tr>
<tr>
<td>Solar heat Polarsol</td>
</tr>
<tr>
<td>Solixi energy storage</td>
</tr>
<tr>
<td>Geothermal power plant in Espoo</td>
</tr>
</tbody>
</table>

Inexpensive storage of hydrogen in nanostructures (2.92) *

Storage of hydrogen is mainly developed in connection with hydrogen cars. Storage of hydrogen in nanostructures or chemical compounds is necessary for long-time storage of hydrogen, such as the storage of solar energy in summer to be used in winter. Progress has been made with combining hydrogen with hydrocarbons, such as toluenes and benzene. The opportunities provided for graphene for the storage of hydrogen are being actively studied in a number of products. So far, no breakthroughs have been reported. Recommendation: retain.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
</table>
Wireless electricity transmission (magnetism) for electric cars and other electrical devices (2.93) **

Ossia has demonstrated the Cota technology that charges 30 different devices at a distance of ten metres. An AA battery, for example, has been demonstrated as a receiving device to be charged. Many actors have launched induction-based short-distance chargers. Recommendation: retain, but extend the heading to Wireless power transmission.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cota wireless charging</td>
</tr>
<tr>
<td>Wireless charging 10 m</td>
</tr>
<tr>
<td>Wireless charging of cars</td>
</tr>
</tbody>
</table>

High-performance lasers, wireless power transfer, laser weapons (2.94) *

Many news have been published on the deployment of high-performance lasers in military use for combatting UAVs. EMP cannons have also been developed for military use for destroying electronic devices. Microwave weapons have also been introduced for military use. Directed energy weapons are developing fast. Recommendation: retain, but incorporate wireless power transfer in item 2.93 and change the heading to High-performance lasers, directed energy weapons.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antidrone weapons</td>
</tr>
<tr>
<td>UAV combatting</td>
</tr>
</tbody>
</table>
Technology links after September 2013

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bofors HMP directed energy weapon</td>
<td>http://www.miltechmag.com/2014/03/todays-directed-energy-weapons-meeting.html</td>
</tr>
<tr>
<td>Laser weapon in use (USA)</td>
<td>http://www.uusisuomi.fi/teknologia/75325-usan-armeija-ottijuuri-kaytoon-1-laseraseen-047-eu-laualaus</td>
</tr>
<tr>
<td>EMP cannon</td>
<td>http://yle.fi/uutiset/venaja_esittelee_mikroaaltotankunan_типхоа_lentokoneiden_ja_jennoikkien_elektroniikan/8075687</td>
</tr>
</tbody>
</table>

(new) Inexpensive small fuel cell (2.102)

The fuel cell market has increased tenfold many times since the turn of the millennium. The development has been fast. Fuel cells are developed for the use of hydrogen, methane, alcohol, sugar, etc., as energy sources. Fuel cells produce electricity and heat. GE estimates achieving up to 95% energy efficiency in combined electricity and heat production. The natural gas fueled Redox Cube is a 25 kW device with a size of one cubic metre that promises over 54% efficiency in power generation and over 80% efficiency in combined power and heat generation. Toyota has made available thousands of fuel cell patent applications. The efficiency of fuel cells clearly exceeds diesel aggregates without taking heat generation into account. If the development continues as expected, fuel cells together with solar panels enable financially feasible withdrawal from the grid and better energy security for many households. Recommendation: new category.

Technology links after September 2013

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel cell (commercial)</td>
<td>http://www.powercell.se/products/fuel-cell/</td>
</tr>
<tr>
<td>5,000 fuel cell patents made available (Toyota)</td>
<td>http://www.geekwire.com/2015/toyota-gives-away-patents-build-game-changing-car-future/</td>
</tr>
<tr>
<td>Small fuel cells</td>
<td>http://www.redoxpowersystems.com/products/</td>
</tr>
<tr>
<td>Sugar fuel cell</td>
<td>https://www.facebook.com/download/915787981841799/P020141125389402985500.pdf</td>
</tr>
<tr>
<td>Microbial fuel cell</td>
<td>https://en.wikipedia.org/wiki/Microbial_fuel_cell</td>
</tr>
</tbody>
</table>
The warming of the climate has induced global measures, ranging from emission restrictions to carbon dioxide tax and emissions trading. Methods for the removal of carbon dioxide from process fuel gases, the atmosphere and sea water are developed continuously. The most promising of these are methods that produce useful materials of carbon dioxide and methods involving a process that is not energy intensive. Biological methods for carbon dioxide removal include genetically engineered bacteria and plants and synthetic photosynthesis, which is now being developed by many laboratories. Liquid fuels and methane are produced from carbon dioxide with promising new methods. The purpose is to use extra solar and wind power for the production of synthetic fuels and bind carbon dioxide at the same time. One of the most interesting radical technologies is pumping air through molten salt and live catalyst in a process that uses very little electricity and ties carbon from carbon dioxide in air into useful and valuable nanocarbon. This process will reduce the production cost of nanocarbons at least by one order of magnitude compared with other nanocarbons of similar quality. At least in theory, this method could be scalable into purifying the entire atmosphere of extra carbon dioxide in a manner that would be financially profitable. Recommendation: new category

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen and graphite from methane</td>
</tr>
<tr>
<td>CO2 capture from sea water</td>
</tr>
<tr>
<td>Fast-growing GMO tree</td>
</tr>
<tr>
<td>Renewables provide 95% of energy in Uruguay</td>
</tr>
<tr>
<td>Carbon and energy from natural gas</td>
</tr>
</tbody>
</table>

Technology links after September 2013

<table>
<thead>
<tr>
<th>Driverless electric cars to reduce CO₂ emissions by 90%</th>
<th>http://www.popsci.com/green-argument-driverless-cars</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEA 2050 vision</td>
<td>http://www.iea.org/etp/explore/</td>
</tr>
<tr>
<td>Synthetic photosynthesis, CO₂ capture</td>
<td>http://pubs.acs.org/doi/abs/10.1021/acs.nanolett.5b01254?journalCode=nalefd</td>
</tr>
<tr>
<td>CO₂ capture</td>
<td>http://www.nature.com/nature/journal/v519/n7543/full/nature14327.html</td>
</tr>
</tbody>
</table>

(new) Off Grid and Micro Grid solutions (2.110)

A number of separate solutions enable a technically easier and financially more sensible withdrawal from the grid, independent food production and goods manufacturing. Apartment- and community-level solutions have been demonstrated. In Australia, for example, it has been estimated that by 2020, it would be financially profitable for up to 50% of households to withdraw from the national grid. Ecocapsule is a prototype of an easily movable home. It produces the energy it needs, collects and purifies rainwater for household use and treats sewage. Recommendation: new category.

Technology links after September 2013

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Off Grid housing – Ecocapsule</td>
<td>http://www.huffingtonpost.com/2015/05/26/tiny-house_n_7443744.html</td>
</tr>
</tbody>
</table>

7.9 Digital crowdsourcing platforms and platform companies

Uberisation of work is a topic of increasingly serious discussion around the world. With the use of software and a global information network, the interface to job opportunities, quality assurance of work, trust, assignments and payment transactions can be automated. This decreases administrative costs and enables very dynamic and flexible organisations. Typically, the person doing the work owns the resources used or provided, and there is no permanent employment contract. Platform companies provide a channel for an economy of sharing, in which your apartment, car or any goods you no longer need are used by others, temporarily or permanently. As regards crowdsourcing, we can also talk about funding, collection of data conducted during use, or other use of time that involves people giving others access to their funds or expertise through a shared platform. The platform may be owned by a company or the third sector.
The impact of crowdsourcing platforms and platform companies on the reorganisation of work is becoming increasingly strong. The platforms reduce the number of layers in organisations and convert some of the previously paid jobs into voluntary activities. Wikipedia is a good example of this phenomenon that may considerably reduce or even completely replace business in some areas and, despite this, provide users with superb quality and availability compared with services previously provided by companies. A platform company may employ a considerably high number of people. For example, the six-year old Uber employs more than a million drivers in 64 countries, offering their services further. In practice, a platform company has total control over the way in which the platform operates. As platforms operate as cloud services, any changes have an immediate effect on the services.

Technological development after the publication of the TuV9/2013 report and needs for improvement related to reporting:

Freely organising remote work and organisations that form on the internet (2.13)

In a few years, a multitude of services have emerged for the organisation of work and service on the internet. Uber and Airbnb are the financially most important of the newcomers. Linux and Wikipedia have the most extensive effects and are mostly based on voluntary work. Examples of recent development include the Be My Eyes service, the online doctor service organised by Google, Wikihouse, Opendesk and Flipboard. Transformation of advertising media, or AdTech business, peer collaboration networks, Darknet operating outside the reach of law and other anonymous internet, web-of-trust platforms, open-source code communities and workforce on demand platforms are some examples of the new growing trends. Radical ideas have been developed relating to machine-to-machine economy, platform co-operatives, a sharing economy in which the marginal cost approaches zero, and organisations becoming more dynamic networks. Organisations without leaders, such as Boorzorg, consumerisation of health care devices and organisation of peer groups, open-source code pancreas or the concept of an Uber of the seas show that this development will probably not leave many fields of business untouched. The development has been very fast. Recommendation: split the domain into 2–4 categories, for example: a) Platform companies that provide services and goods; b) Voluntary consolidation of user data and voluntary work platforms; c) Decentralised, professional production of content (subject to a charge or sponsored); d) Darknet and other anonymous internet.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Googling online doctors</td>
</tr>
</tbody>
</table>
Crowd funding and micro finance (2.18) **

A simple invention related to beekeeping raised over 12 million dollars through Indiegogo’s crowdfunding. Projects of Indiegogo and Kickstarter have received increasing amounts of funding, and the platforms have been established as significant early funding and marketing channel for new product ideas. Indiegogo is planning to start providing services also for medium-sized and large companies. In Finland, crowdfunding is taking its first steps. With regard to legislation, the situation is still confusing, due to attempts to restrict the structures of self-organisation with regulative measures. This is very harmful for Finnish actors and does not protect Finnish customers, who are increasingly
participating in crowdfunding campaigns of foreign actors. The significance of crowdfunding for the transformation of economy and as a means for bypassing rigid structures has probably only started to emerge, and fast development will continue. Recommendation: retain.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Crowdfunding example, $12 million to fund a honey harvesting system</td>
<td>https://www.indiegogo.com/projects/flow-hive-honey-on-tap-directly-from-your-beehive</td>
</tr>
</tbody>
</table>

Open data and Big data (2.19) **

In the first report, Open data and Big data were combined into one technology basket, as it seemed that only openly available Big data was significant. The rapid development of the industrial internet and internet of things, as well as the extensive amount of data available through cloud services, have quickly changed the situation. Industry and service organisations have more and more data available even in closed systems. On the other hand, the idea of open data has made such a quick breakthrough that, instead of the openness of data, the lack of interface standards can be seen as a problem. Thus, despite openness, the use of data is too complicated. Numerous examples of Big Data have been published recently. For example, you can figure out earthquakes from mobile phone data in real-time, in addition to countless other things. Big Data is too large a concept and it only keeps growing. From the perspective of applying Big Data, the main problem is no longer the availability of data but the algorithms and artificial intelligence needed to combine data into useful conclusions. Even though the category has continued to progress very fast at the application level, removal of this category is recommended. As regards Big Data, matters should be addressed in more detail as part of artificial intelligence and algorithmic deduction, and open data should be addressed as part of interfaces and digital crowdsourcing platforms.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Smartphone app gives earthquake warning</td>
<td>http://advances.sciencemag.org/content/2/2/e1501055.full</td>
</tr>
</tbody>
</table>
Gamification (2.20) ****

Gamification has clearly progressed in the trust-promoting structures of platform companies, such as Uber. However, as an independent category, news in media is not detected and the area is not subject to significant research. Nevertheless, the concepts related to gamification have been clarified. The most extensive progress has been seen in the area of online learning. As the progress is clearly noticeable and has a strong impact on self-management and platform activities, it is recommended to continue monitoring this category: retain.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideology of gamification matures</td>
</tr>
</tbody>
</table>

Electronic money, time banks (2.99) ****

Paypal and Bitcoin played a significant role during the worst time of the euro crisis in Greece. Bitcoin has doubled its turnover every year. In the latter part of 2015, the value was one billion dollars. Subcutaneous bitcoin wallets have been implanted in humans and a protocol to distribute Bitcoin via radio is under development. Bitcoin is also increasingly called a pyramid scheme. Its basic weaknesses are pointed out and its successor predicted. The number of Paypal users is growing steadily. At the end of 2015, there were approximately 180 million active users. Mobile payment has made electronic money very important in Africa. Transferring money between accounts using handy smartphone apps is banks’ response to bit money. Time banks have not made significant progress. Recommendation: retain, but change the category to Electronic money and incorporate the content related to time banks as part of freely organisable work. On the other hand, Bitcoin could also be included as part of the proposed new 2.112 Blockchain category.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blockchain money for Tunisia’s post office</td>
</tr>
<tr>
<td>Subcutaneous Bitcoin wallet</td>
</tr>
<tr>
<td>Bitcoin via radio</td>
</tr>
</tbody>
</table>
7.10 Globalising technology component interfaces

Microsoft, Apple and Google, among others, have demonstrated what power technological products can have when they become industrial standards. When products include interfaces for their programming and use, new ecosystems and complete socio-economic systems that use the technology are born, relying on the interfaces. The technologies may enable practices that are in conflict with the way in which an individual country would like to attend to matters. However, it is difficult for an individual country to demand changes to global interfaces or, due to the detected issues, to keep out of these ecosystems.

Increasingly often, technology interfaces set the framework for social, political, financial and even military interaction. The interfaces discussed in this section benefit from and, when they become more common, produce economies of scale, connectivity and expanding ecosystems related to them. The interfaces are clearly stable and any modifications to them without losing their user base are possible only by expanding their functionality.

Evolving IOT, robotisation, artificial intelligence, virtual reality and biotechnology each expand the significance of technology interfaces and create new, even more significant interfaces. Anticipation of these is important but challenging.

Technological development after the publication of the TuV9/2013 report and needs for improvement related to reporting:

Cloud computing (2.28) ****

Cloud services have rapidly become mainstream. Storage space and computing capacity can conveniently be leased according to need. This requires that the applications are compatible with the interfaces of virtualised servers and workstations. Cloud services are also increasingly produced at the application level. More and more devices come with functional features that are based on cloud services. According to the most dramatic expert forecast, the annual cost of storage space used in cloud services will drop to one thirtieth from 2015 to 2020. The estimate is based on increasing adoption of new memory technology. Recommendation: split in two sections to be monitored, in accordance with virtual computers offered through cloud services and storage-related SAAS services.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical GST memory circuit</td>
</tr>
<tr>
<td>Decreased price of Nand Flash memory promotes cloud services</td>
</tr>
</tbody>
</table>
Grid computing (2.29) ***

As a result of the rapid progress of cloud computing, decentralisation of processing capacity through the processing of workstations has not emerged more strongly as a phenomenon. Its significance can be expected to decrease along with the advancing of cloud computing. Recommendation: remove.

Modular robotics (2.53) ****

The development of robotics is quickly becoming modular. The price of robot control electronics is decreasing from tens of euros to less than ten. Hands, sensors and software platforms for robots are sold and developed in separate projects that are based on compatible interfaces. The strongest modularisation is seen around Arduino and Raspberry Pi. Quadcopters and the extrusion technology of 3D printers are the most distinct representatives of modularity. Modular robotics are clearly connected to the development of IOT and AI, within which many new parallel interfaces and platforms are being created. These will possibly create separate ecosystems that each involve modularity. However, it will probably be challenging to combine modules intended for different ecosystems. Dominant design will develop before long. Recommendation: retain, change the name to Modular robotics, robotic ecosystems.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOT adapters</td>
</tr>
<tr>
<td>Arduino/Raspberry Pi comparison</td>
</tr>
<tr>
<td>Open hardware</td>
</tr>
<tr>
<td>EUR 134 robotic hand</td>
</tr>
<tr>
<td>$9 computer, wifi, linux, etc.</td>
</tr>
</tbody>
</table>

Internet for robots (2.100) **

Car manufacturers have started developing joint procedures for communication between cars. The development of 5G networks particularly pays attention to the explosively increasing need for communication by wireless sensors, resulting from the development of the IOT, and the need of many robots for low latency. Controlling of terrestrial robots from satellites and an internet protocol operating in space have also been developed.
Mutual sharing of information between learning robots has been developed further. This trend can be expected to increase rapidly as AI platforms evolve and their interfaces mature. Recommendation: split into two, a) competence and control services for robots, b) 5G network and telecommunications services for robots.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internet for robots</td>
</tr>
<tr>
<td>Internet of space</td>
</tr>
<tr>
<td>Internet for robots</td>
</tr>
<tr>
<td>Google’s Skybender 5G plan uses millimetre waves</td>
</tr>
<tr>
<td>Car-to-car communication</td>
</tr>
<tr>
<td>5G networks</td>
</tr>
</tbody>
</table>

(new) **MyData (2.111)**

MyData is a trend and international open development project for the creation of shared interfaces, so that citizens could possess and manage such information of themselves that different organisations have collected about them in their person registers. The development of MyData may have significant value for the national economy. In addition, its significance for people’s daily life can be considerable by making it smoother and by promoting the feeling of management and fairness. Recommendation: new category.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>MyData</td>
</tr>
<tr>
<td>MyData in government platform</td>
</tr>
</tbody>
</table>
(new) Blockchain and other p2p solutions (2.112)

Blockchain has grown together with Bitcoin. However, there are many actors who are using Blockchain to develop various types of systems that can be very different from the original application. In a digital city project in China, for example, Blockchain is used for assigning user rights and conducting operation control. There are also plans to use Blockchain for share trading and other trading in securities and the securing of log data of telephone discussions. IBM supports Linux Foundation’s project to develop an open source Blockchain platform. The domain is expanding very fast, and it has a great impact on the rationalisation of administration and bypassing of traditional power and control structures. Recommendation: new category.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blockchain development opportunities</td>
</tr>
<tr>
<td>Blockchain-based structures of trust, several links</td>
</tr>
<tr>
<td>Blockchain applications, several links</td>
</tr>
</tbody>
</table>

(new) Digital art, digital experiences (2.700)

Digitalisation, artificial intelligence and robotisation enable new ways for producing experiences and art and delivering them to people. The new opportunities enable completely new forms of art and entertainment, but also easy copying and virtually experiencing already existing works of art. This development will create new, global technological interfaces between distribution, applications, recordings and terminal devices. Recommendation: new category.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significance of design</td>
</tr>
<tr>
<td>Future of music</td>
</tr>
<tr>
<td>Quadcopters replace fireworks</td>
</tr>
<tr>
<td>Robots on stage</td>
</tr>
</tbody>
</table>
7.11 Unclassified innovations (2.200)

This list includes news about technological and scientific innovations that have breakthrough potential but have not yet been categorised. They were found through crowdsourcing but require consideration and assessment to be placed in a category, if they are found to be part of some significant phenomenon.

<table>
<thead>
<tr>
<th>Technology links after September 2013</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circular economy</td>
<td>http://www.maaseuduntulevaisus.fi/ympp%C3%A4rist%C3%B6/sitra-kotimaista-h%C3%A4rk%C3%A4papua-tuontisoijan-tilalle-1.126302</td>
</tr>
<tr>
<td>Thing2Data – individual identity of goods</td>
<td>https://www.facebook.com/notes/risto-linturi/esineiden-internet-hankkeen-thing2datan-hanke-esite-%C3%A4m%C3%A4nkaltaita-kaiahaltus/10153385399454602</td>
</tr>
<tr>
<td>Express building</td>
<td>https://www.youtube.com/watch?v=rwvmru3JmXk</td>
</tr>
<tr>
<td>Privatisation of health care services in Finland</td>
<td>http://yle.fi/uutiset/terveyspalvelut_yksityistyvat_nopeasti/7623506</td>
</tr>
<tr>
<td>Hubless wheel</td>
<td>https://www.youtube.com/watch?v=cPsY2NfPJtw</td>
</tr>
<tr>
<td>Virtual windows</td>
<td>http://www.virgin.com/richard-branson/virgin-launches-glass-bottomed-plane</td>
</tr>
<tr>
<td>Public transport solution on the road</td>
<td>https://www.youtube.com/watch?v=t1gTzc7-IbQ</td>
</tr>
<tr>
<td>GHz antenna on a chip has been questioned</td>
<td>http://spectrum.ieee.org/tech-talk/biomedical/devices/new-theory-leading-to-gigahertz-antenna-on-a-chip-is-questioned</td>
</tr>
<tr>
<td>Quick encryption (MS)</td>
<td>http://www.theregister.co.uk/2016/02/09/researchers_break_homomorphic_encryption/</td>
</tr>
</tbody>
</table>
Technology links after September 2013

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Passive WiFi (almost without power)</td>
<td>http://www.eurekalert.org/pub_releases/2016-02/uow-uea022316.php</td>
</tr>
</tbody>
</table>

7.12 Discussions related to technology news

Nearly all of the approximately thousand science and technology news included in the tables of this chapter were discussed by the crowdsourcing group. Very often, the discussion brought up excellent viewpoints, critics and links to parallel research data, original scientific publications and tangential topics. Thus, the thousand links presented here are just a representative sample and summary of the more detailed material produced through crowdsourcing. Appendix 2 is a file that, in addition to these links, includes the name of the person posting the link and a link to the discussion on the topic, as well as the classification information of the links and assessment of the progress of the technology baskets. To be able to open the link to a discussion requires membership in that Facebook group. This is due to a privacy-related technical reason. Membership has been automatically granted to all Finnish citizens who have requested it.

Figure: Extensive crowdsourcing through social media continued for years
Appendix 1 Preliminary description of the radical technologies database

A Hundred New Opportunities for Finland: Radical Technological Solutions

Preliminary description of database in accordance with the four-level model:

Table 1: Value-producing network

Fields: AVID, main heading of network, subheading, general description, additional value of the network including scope of influence, network dynamics and actors, technological threats to the network, technological opportunities related to the network, the socio-technical regime controlling the network and inertial forces.

Table 2: Technology basket

Fields: TKID, TKRID, heading of technology basket, general description, readiness for the market, domestic expertise, export channels, scientific research background, R&D background, AVID1-20, VIKD1-N (scoring values)

Table 3: Export channel

Fields: VKID, TKID, description of export channel, scope of export channel

Table 4: Technology news

Fields: TKUID, TKID, heading describing the technology news, news classification, importance as news, date, person posting/TID, link to news, link to discussion.

Table 5: Technology group

Fields: TKRID, technology group

Table 6: Application

Fields: SID, AVID, TKID, description of application, weight

Table 7: State

Fields: VID, weight of value-producing network 1–20

Table 8: Area

Fields: AID, description of area
Table 9: Organisation

Fields: OID, AIR, name of organisation, description, weight of organisation in the value-producing network 1–20, need in technology baskets 1–100, offering in technology baskets 1–100.

Table 10: Person with knowledge

Fields: TID, name, contact details, description, expertise, postings, TKUID 1–n

Appendix 2: collection of links to technologies developed after the publication of the report
2 DNA identification software http://www.sciencedwireworldreport.com/articles/13249/ 20140303/complete-medical-check-up-chip.htm 1 Kari Vahtiala https://www.facebook.com/groups/TuVRaidikaali/permalink/677513325699610/ 0
2 Anticorps and biosensors able to diagnose cheaply diseases, physiological states and testing a large number of proteins with a handheld device http://www.sciencedwireworldreport.com/articles/13249/ 20140303/complete-medical-check-up-chip.htm 2 2014 Report by the Committee 1 for the Future 5
4 Gene therapy to treat cancer http://www.ncbi.nlm.nih.gov/pmc/articles/PMC904176/ 7 Risto Linturi https://www.facebook.com/groups/TuVRaidikaali/permalink/78669970478971/ 0
4 Stem cell treatment for Parkinson’s disease http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9735157/ 7 Risto Linturi https://www.facebook.com/groups/TuVRaidikaali/permalink/663974963720113/ 0
4 Drugs based on genetically modified organisms http://blog.planetcs.com/2014/03/28/anti-cd47-cancer-drug/ 4 2014 Report by the Committee 7 for the Future 5
4 Anti-CD47 cancer treatment to begin human testing http://www.plancs.com/2014/03/01/anti-cd47-cancer-drug/ 4 2014 Report by the Committee 7 for the Future 5
5 Pill camera, Smithsonian http://www.sciencedwireworldreport.com/articles/13249/ 20140303/complete-medical-check-up-chip.htm 7 Laura Tillikainen https://www.facebook.com/groups/TuVRaidikaali/permalink/718457091605233/ 0
5 Biodegradable implant http://www.nasa.gov/press/2015/04/02/shepperton-nasa-undeletable-implant-can-be-controlled-by-the-user/ 7 Tatu Lund https://www.facebook.com/groups/TuVRaidikaali/permalink/672970076159935/ 0
5 Remote-controlled medicine implant http://www.techcrunch.com/2014/03/20/remote-controlled-implant-for-liver-cancer-treatment/ 7 Tatu Lund https://www.facebook.com/groups/TuVRaidikaali/permalink/59863973614346/ 0
Robotic dive into the cell	http://www.bbc.co.uk/news/2014/01-05	1 Risto Linturi	https://www.facebook.com/groups/TuVRa-dikaalit/permalink/519040951546815/	0
Preventing of aging	http://www.humanlongevity.com/	0		
5 Nanobot microinoters deliver medicine into the body of mice	http://www.gizmag.com/nanobot-micromotors-deliver-nanoparticles-living-creature/35700/	1 Karl Alanne	https://www.facebook.com/groups/TuVRa-dikaalit/permalink/86819804816469/	0
5 Rice grain-sized biodegradable sensor for the brain	http://arstechnica.com/science/2016/01/in-a-brain-dissolvable-electronics-monitor-health-then-vanish/	1 Risto Linturi	https://www.facebook.com/groups/TuVRa-dikaalit/permalink/884886218395652/	0
5 Activation of paralyzed limb with neuroimplants	http://www.nature.com/news/2014/01-04	7 Tatu Lund	https://www.facebook.com/groups/TuVRa-dikaalit/permalink/877140185793272/	0
5 Nanorobots (nanobots) in the health promotion	2014 Report by the Committee	0		
5 Nanobot micromotors deliver medicine into the body of mice	http://www.gizmag.com/nanobot-micromotors-deliver-nanoparticles-living-creature/35700/	1 Karl Alanne	https://www.facebook.com/groups/TuVRa-dikaalit/permalink/86819804816469/	0
5 Rice grain-sized biodegradable sensor for the brain	http://arstechnica.com/science/2016/01/in-a-brain-dissolvable-electronics-monitor-health-then-vanish/	1 Risto Linturi	https://www.facebook.com/groups/TuVRa-dikaalit/permalink/884886218395652/	0
5 Activation of paralyzed limb with neuroimplants	http://www.nature.com/news/2014/01-04	7 Tatu Lund	https://www.facebook.com/groups/TuVRa-dikaalit/permalink/877140185793272/	0
5 Promotion of longevity	http://www.pnas.org/content/early/2015/07/16/1503411112	7 Risto Linturi	https://www.facebook.com/groups/TuVRa-dikaalit/permalink/80071190046468/	0
5 Promotion of longevity	http://scilib.org/do%3Fdo:th%3Estartling-animals-studies-mean-your-lifespan-cz-486041114	7 Risto Linturi	https://www.facebook.com/groups/TuVRa-dikaalit/permalink/751417224978484/	0
5 Prevention of aging (skin)	http://www.pig.de/science/20030721.html	7 Risto Linturi	https://www.facebook.com/groups/TuVRa-dikaalit/permalink/86643181432971/	0
5 Anti-aging drug trial beginnings	2014 Report by the Committee	0		
5 HU Human Longevity Inc	http://www.humanlongevity.com/	7 Harri Vartiainen	https://www.facebook.com/groups/TuVRa-dikaalit/permalink/53149688304609/	0
5 Muscle cells rejuvenated	http://www.bbc.co.uk/news/health-25445748	7 Risto Linturi	https://www.facebook.com/groups/TuVRa-dikaalit/permalink/496435484507460/	0
5 Google to research extension of lifespan	http://www.usatoday.com/story/tech/2013/09/13/google-calico-health-aging/2833675/	7 Risto Linturi	https://www.facebook.com/groups/TuVRa-dikaalit/permalink/54438490343688/	0
5 Genetics of aging	http://www.nature.com/news/2015/01-02/2013200117.html	7 Peikko Neva	https://www.facebook.com/groups/TuVRa-dikaalit/permalink/89673407483600/	0
6 Longer lifetime and slower aging processes	2014 Report by the Committee	7 for the Future	0	
6 Young blood rejuvenates the brain of old mice	http://news.sciencemag.org/biology/2014/05/young-blood-renews-old-brain	7 Risto Linturi	https://www.facebook.com/groups/TuVRa-dikaalit/permalink/8935019390316/	0
6 Human Longevity Inc	http://www.humanlongevity.com/	7 Karl Alanne	https://www.facebook.com/groups/TuVRa-dikaalit/permalink/8935019390316/	0
6 Mitochondrial manipulation to slow down the aging of hepatic cells	http://embio.emb press.org/content/early/2015/02/01/emb.20150282/	7 Karl Alanne	https://www.facebook.com/groups/TuVRa-dikaalit/permalink/8935019390316/	0
Devices for self-diagnosis
http://gigaom.com/2014/09/30/timeless-innovations-that-will-make-new-medical-devices/ 1 Karl Vahtiala 0

Microwave stethoscope
http://www.medicalnewstoday.com/articles/286352.php 1 Karl Vahtiala 0

Personal diagnosis gadget

Dozens of blood tests with a small gadget
http://www.sciencedaily.com/releases/2015/06/1506261122445.htm 1 Karl Vahtiala 0

#34 H.I.V.& Syphilis test accessory for smartphone
http://spectrum.ieee.org/biomedical/diagnostics/winning-wpizte-medical-gadget-could-run-hundreds-of-lab-tests-on-a-single-smartphone.html 1 Risto Linturi 0

Ear infection imaging at home
http://io9.com/this-medical-device-is-a-major-pioneer-in-rapid-forensic-micro chip-monitoring.html 1 Risto Linturi 0

Glucose sensor for the skin
http://www.eyenaemia.com/ 1 Peikko Vehviläinen 0

Body implants top 10
http://www.technologyreview.com/featuredstory/513533.php 1 Kari Vahtiala 0

Quantified self test
http://www.nature.com/news/memory-coding-and-memory-implants/2015/06/16/daily-memory-implants-are-here.html 1 Karl Vahtiala 0

Needle-free blood test at pharmacy
http://www.engadget.com/2014/11/18/walgreens-blood-tests/ 1 Tatuu Lund 0

Diagnosis wristband & API
http://www.cnet.com/products/samsung-simband/ 1 Pekko Vehviläinen 0

Subcutaneous chip
http://www.sciencedaily.com/releases/2015/06/1506261122445.htm 1 Karl Vahtiala 0

Eye implant – 60 pixels
http://www.sciencedaily.com/releases/2015/06/1601122445.htm 7 Harri Vartiainen 0

Apple Healthkit
http://www.technologyreview.com/featuredstory/513533.php 1 Karl Vahtiala 0

Dialysis belt (5 kg)

Glucose sensor for the skin
http://www.technologyreview.com/featuredstory/513533.php 1 Peikko Vehviläinen 0

Quantified self test
http://www.sciencedaily.com/releases/2015/06/1506261122445.htm 1 Karl Vahtiala 0

Apple Healthkit
http://www.patentlyappl.com/2016/09/iphone-6-apple-watch-prepare-major-trials-with-apples-healthkit.html 10 Risto Linturi 0

Smart spoon for Parkinson’s sufferers
http://thescienceexplorer.com/brain-and-body/smart-spoon-could-change-lives-parkinson-s-sufferers/ 1 Peikko Vehviläinen 0

Diagnosis wristband & API
http://www.cnet.com/products/samsung-simband/ 1 Peikko Vehviläinen 0

Contact lens for glucose level measurement
http://www.engadget.com/2014/03/26/google-smart-contact-lens/ 1 Antti Tulonen, Tatuu Lund 0

Continuously monitored personal health
http://www.nature.com/news/memory-coding-and-memory-implants/2015/06/16/daily-memory-implants-are-here.html 1 Risto Linturi 0

Smart spoon for Parkinson’s sufferers
http://thescienceexplorer.com/brain-and-body/smart-spoon-could-change-lives-parkinson-s-sufferers/ 1 Peikko Vehviläinen 0

A review of smartphones for personal body measurement: stethoscope connected to smartphone diagnoses lung conditions
http://www.nature.com/news/memory-coding-and-memory-implants/2015/06/16/daily-memory-implants-are-here.html 1 Risto Linturi 0

Nanobots for the body
http://www.linkedin.com/pulse/rays-wildest-prediction-peter-diamandis/ 1 Aleksi Rossi 0

Brain implants
http://www.eurekalert.org/pub_releases/2015-01/spoon-could-change-lives-parkinson-s-sufferers.php 1 Karl Vahtiala 0

Biocompatible artificial neuron

Connection between the brain and the immune system
http://www.sciencedaily.com/releases/2015/06/1506261122445.htm 7 Harri Vartiainen 0

Eye implant – 60 pixels
http://www.medicalnewstoday.com/articles/289863.php 7 Risto Linturi 0

Retinal prosthetics
http://www.medicalnewstoday.com/articles/289863.php 7 Risto Linturi 0

Artificial eye implanted in human
http://biovision.org.ua/eye 7 Peikko Vehviläinen 0

Memory coding and memory implants
http://www.sciencedaily.com/releases/2015/06/1506261122445.htm 3 Jari Kaivo-oja 0

Ear infection imaging at home
http://www.sciencedaily.com/releases/2015/06/1506261122445.htm 1 Risto Linturi 0

Quantified self test
http://www.sciencedaily.com/releases/2015/06/1506261122445.htm 1 Karl Vahtiala 0

Glucose sensor for the skin
http://www.eyenaemia.com/ 1 Peikko Vehviläinen 0

Body implants top 10
http://www.technologyreview.com/featuredstory/513533.php 1 Kari Vahtiala 0

Subcutaneous chip
http://www.sciencedaily.com/releases/2015/06/1506261122445.htm 1 Karl Vahtiala 0

Eye implant – 60 pixels
http://www.sciencedaily.com/releases/2015/06/1601122445.htm 7 Harri Vartiainen 0

Retinal prosthetics
http://www.medicalnewstoday.com/articles/289863.php 7 Risto Linturi 0

Artificial eye implanted in human
http://biovision.org.ua/eye 7 Peikko Vehviläinen 0

Memory coding and memory implants
http://www.sciencedaily.com/releases/2015/06/1506261122445.htm 3 Jari Kaivo-oja 0
 7. Aleksi Rossi
 2014 Report by the Committee
 1. Jarmo Heimo

 4. 2014 Report by the Committee
 1. Jarmo Heimo

 4. 2014 Report by the Committee
 1. Jarmo Heimo

 4. 2014 Report by the Committee
 1. Jarmo Heimo

 4. 2014 Report by the Committee
 1. Jarmo Heimo

9. 70% of Alzheimer’s cases in mice were cured: http://www.sciencalert.com/new-alzheimer-s-treatment-failly-restores-memory-function
 7. Risto Linturi
 2014 Report by the Committee

 2. Risto Linturi

 7. Risto Linturi
 2014 Report by the Committee

 7. Risto Linturi
 2014 Report by the Committee

 7. Peikka Neva
 2014 Report by the Committee

9. Drugs that prevent dementia Klotho gene protects against Alzheimer’s: http://www.ucsf.edu/news/2014/05/114196/better-cognition-seen-gene-variant
 7. Risto Linturi
 2014 Report by the Committee

 7. Risto Linturi
 2014 Report by the Committee

 7. Seppo Nikkilä
 2014 Report by the Committee

 7. Risto Linturi

 7. Peikka Neva
 2014 Report by the Committee

damaged-nerves-re-grown-for-first-time-using-
 7. Vilho Ahola

 7. Petja Jäppinen
 2014 Report by the Committee

 7. Tatuu Lund
 2014 Report by the Committee

 7. Kari Vahtiharja
 2014 Report by the Committee

 7. Sulka Haro

10. Large quantities of insulin-producing cells have been cultivated: http://www.sciencedaily.com/releases/2015/07/150729.html
 7. Risto Linturi
 2014 Report by the Committee

10. Artificial blood from factories: http://www.sciencedaily.com/releases/2015/07/150711312418.htm
 7. Tatuu Lund and Peikka Neva
 2014 Report by the Committee

 7. Harii Vartiharja
 2014 Report by the Committee

 7. Jarmo Heimo
 2014 Report by the Committee

 7. Risto Linturi
 2014 Report by the Committee

 7. Risto Linturi
 2014 Report by the Committee

 7. Risto Linturi
 2014 Report by the Committee

 7. Peikka Neva
 2014 Report by the Committee
10 3D-printing of blood vessels
7 Jarmo Heimo
https://www.facebook.com/groups/TuVRa/diakata/permalink/576363285184615/ 0

10 Cancer tumour, cultivated & 3D printed
7 Jarmo Heimo
https://www.facebook.com/groups/TuVRa/diakata/permalink/556813261102951/ 0

11 3D printed cartilage
7 Peikko Vehviläinen
https://www.facebook.com/groups/TuVRa/diakata/permalink/58164830967794/ 0

11 Synthetic cartilage in human joints
2014 Report by the Committee
7 for the Future
2

11 Artificial 3D printed cartilage
2014 Report by the Committee
7 for the Future
0

11 Synthetic cartilage tested in patients
7 Risto Linturi
https://www.facebook.com/groups/TuVRa/diakata/permalink/890934781024128/ 0

12 Schools in the cloud
2014 Report by the Committee
3 for the Future
2

12 Duolingo – free-of-charge courses of 23 languages
3 Mari Heimala
0

12 MOOC trends
9 Risto Linturi
https://www.facebook.com/groups/TuVRa/diakata/permalink/88442523008417/ 0

12 Gamification platform for learning
http://www.eppgo.io/
3 Laura Tiiilikainen
https://www.facebook.com/groups/TuVRa/diakata/permalink/8956390550238/ 0

12 Accurate neurostimulation improves the efficiency of learning
3 Harri Varttainen
https://www.facebook.com/groups/TuVRa/diakata/permalink/90689719427995/ 0

12 Driverless cars owning themselves
9 Aleksi Rossi
https://www.facebook.com/groups/TuVRa/diakata/permalink/752538928197049/ 0

12 Open source code pancreas
http://openaps.org/
9 Sulka Haro
https://www.facebook.com/groups/TuVRa/diakata/permalink/716432328475285/ 0

12 Be My Eyes app
http://vimeo.com/113872517
9 Kari Vahtiala
https://www.facebook.com/groups/TuVRa/diakata/permalink/713428165441459/ 0

12 Web-of-trust platform
http://www.ethereum.org/
9 Esa Heiskanen
https://www.facebook.com/groups/TuVRa/diakata/permalink/681109772006632/ 0

12 Googling online doctors
http://gizmodo.com/google-tests-connecting-doctors-with-online-patients-1.644.12934
10 Risto Linturi
https://www.facebook.com/groups/TuVRa/diakata/permalink/65116695834507/ 0

12 Machine-to-machine economy
http://vimeo.com/1133278463
10 Tatu Lund
https://www.facebook.com/groups/TuVRa/diakata/permalink/63979325087744/ 0

12 Zero Marginal Cost society
9 Risto Linturi
0

12 Zero Marginal Cost Society
https://www.youtube.com/watch?v=5-iDUcETjvo
9 Ilkka Kakko
https://www.facebook.com/groups/TuVRa/diakata/permalink/652903521498552/ 0

12 From organisations to networks
http://interactioninstitute.org/blog/2013/07/31/why-networks-for-social-change/
9 Jesse Seoininen
https://www.facebook.com/groups/TuVRa/diakata/permalink/65190990508316/ 0

12 Organisations without leaders
https://www.washingtonpost.com/blogs/on-managers/permalink/500446683406276/
9 Ilkka Kakko
https://www.facebook.com/groups/TuVRa/diakata/permalink/65044689406275/ 0

12 Darknet/anonymous internet
http://apps.washingtonpost.com/g/page/world/nsa-managers/
9 Aleksi Rossi
https://www.facebook.com/groups/TuVRa/diakata/permalink/450725218378423/ 0

12 Freewy organised remote work and organisations that form on the Internet
http://www.facebook.com/groups/TuVRa/diakata/permalink/875214215359159/ 0

13 Work above and below the algorithm
http://www.drukkerforum.org/blog/?p=1097
10 Tatu Lund
https://www.facebook.com/groups/TuVRa/diakata/permalink/875214215359159/ 0

13 Uber business model and examples for group 9
9 Risto Linturi
https://www.facebook.com/groups/TuVRa/diakata/permalink/875381336078127/ 0

13 Platform co-ops
http://www.fairtrade.net/blog/nego-platform-coops-can-beat-death-stars-like-uber-to-create-a-real-sharing-economy
9 Esa Turtiainen
https://www.facebook.com/groups/TuVRa/diakata/permalink/87035218378423/ 0

13 Wikihouse – open source building design
http://www.wikihouse.cc/
9 Mikko Mononen
0

13 Opendesk global furniture design
http://www.opendesk.cc/
9 Mikko Mononen
0

13 Flipboard curation
https://about.flipboard.com/magmaker/flipboard-chairs-summary-how-to-curate-news-magazines/
9 Esa Turtiainen
0

13 Writers Café peer collaboration
http://www.kboards.com/index.php?board=40.0
9 Mari Heimala
0

13 Crowdsourcing in translation/studying
http://www.theguardian.com/education/2012/feb/14/web-translation-fails-learners
9 Mari Heimala
0
<table>
<thead>
<tr>
<th></th>
<th>Gamification</th>
<th>2014 Report by the Committee for the Future</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Ideology of gamification matures</td>
<td>9</td>
</tr>
<tr>
<td>21</td>
<td>Microradar user interface</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>Eye ‘mouse’</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>Gesture user interface with ultrasound</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>Gesture user interface – Soli</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>Interfaces reacting on movements</td>
<td>4</td>
</tr>
<tr>
<td>26</td>
<td>Myo movement control wristband</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>VTT’s AR display</td>
<td>3</td>
</tr>
<tr>
<td>28</td>
<td>Night vision glasses of graphene</td>
<td>3</td>
</tr>
<tr>
<td>29</td>
<td>VR and AR $150 billion in 2020</td>
<td>3</td>
</tr>
<tr>
<td>30</td>
<td>Hololens 1Q2016</td>
<td>3</td>
</tr>
<tr>
<td>31</td>
<td>Magic Leap AR patents</td>
<td>3</td>
</tr>
<tr>
<td>32</td>
<td>Hololens available to developers in 2016</td>
<td>3</td>
</tr>
<tr>
<td>33</td>
<td>Artificial (super) lens for the eye</td>
<td>3</td>
</tr>
<tr>
<td>34</td>
<td>Infrared retina implant testing</td>
<td>1</td>
</tr>
<tr>
<td>35</td>
<td>AR Magic Leap development environment</td>
<td>3</td>
</tr>
<tr>
<td>36</td>
<td>AR-Magic Leap, just another day</td>
<td>3</td>
</tr>
<tr>
<td>37</td>
<td>Artificial eyes 2027</td>
<td>7</td>
</tr>
<tr>
<td>38</td>
<td>Hololens demo</td>
<td>3</td>
</tr>
<tr>
<td>39</td>
<td>LEDs for contact lenses</td>
<td>3</td>
</tr>
<tr>
<td>40</td>
<td>Quadcopter flying with VR glasses</td>
<td>3</td>
</tr>
<tr>
<td>41</td>
<td>Google’s Magic Leap investment</td>
<td>3</td>
</tr>
<tr>
<td>42</td>
<td>Oculus in remote control by drone</td>
<td>3</td>
</tr>
<tr>
<td>43</td>
<td>Google Glass in Dubai</td>
<td>3</td>
</tr>
<tr>
<td>44</td>
<td>VR/Robotic examples</td>
<td>3</td>
</tr>
<tr>
<td>45</td>
<td>Virtual (CT) autopsy</td>
<td>3</td>
</tr>
<tr>
<td>46</td>
<td>Oculus VR in military use</td>
<td>3</td>
</tr>
<tr>
<td>47</td>
<td>Patent for smart contact lenses</td>
<td>3</td>
</tr>
<tr>
<td>48</td>
<td>Thermal camera for contact lens</td>
<td>3</td>
</tr>
</tbody>
</table>
22 Telescopic contact lens
http://www.facebook.com/telescopic-contact-lenses/photos/a.496175695154.294030.879181054/10151870947990155/?type=3&ref= nf
7 Micco Juvenen
https://www.facebook.com/groups/TuVaDi/ dikaalt/permalink/449252005192411/ 0

22 Glasses of augmented reality
http://atheairair.com/
3 Tatu Lund
https://www.facebook.com/groups/TuVaDi/ dikaalt/permalink/87896265221342/ 0

22 Athera, 2D AR glasses
http://www.atherain.com/
2014 Report by the Committee 3 for the Future 5

22 AR glasses (2D) from Kopin
http://www.kopin.com/products/kopin-6-series-
augmented-reality-glasses-with-breakthroughs-in-
display-speech-and-battery-tech/
3 Risto Linturi
https://www.facebook.com/groups/TuVaDi/ dikaalt/permalink/876912944246313/ 0

22 Earbuds modifying the sound
environment
http://www.google.com/what-its-like-to-wear-bionic-
earbuds-1756802462
http://www.ultrahaptics-ultrasonic-tactile-display-
electronics/audiovideo/femtosecond-lasers-create-3d-
midair-plasmas-you-can-touch
0

22 Thinglink for AR and VR
advertisement links
http://www.youtube.com/watch?v=tred9F
http://www.facebook.com/groups/TuVaDi/ dikaalt/permalink/87934260387181/ 0

22 360-degree video
Facebook/BBC
https://www.facebook.com/bbcearth/videos/113305
116195110/7fred9F
http://www.facebook.com/groups/TuVaDi/ dikaalt/permalink/87927806944800/ 0

22 Evaluation on the AR/VR
market segments in 2020 (150
billion)
http://www.youtube.com/watch?v=2QkbVr4J7CM
http://www.youtube.com/watch?v=-606oZKLa_s
http://www.youtube.com/watch?v=116195110/7fred9F
3 Jarmo Salmela
https://www.facebook.com/groups/TuVaDi/ dikaalt/permalink/9027806944800/ 0

22 Hololens technology explained
http://www.youtube.com/watch?v=66e2X1a_s
http://www.youtube.com/watch?v=2OdBV/r47CM
3 Harri Varttainen
https://www.facebook.com/groups/TuVaDi/ dikaalt/permalink/90683377610896/ 0

22 3D light dots projected in the
air with laser
http://www.youtube.com/watch?v=tred9F
http://www.facebook.com/groups/TuVaDi/ dikaalt/permalink/65452335174388/ 0

22 VR with projectors without
glasses
http://www.youtube.com/watch?v=tred9F
http://www.facebook.com/groups/TuVaDi/ dikaalt/permalink/64674335144376/ 0

22 Virtual mask with laser in real-
time
http://www.businessinsider.com/projection-mapping-
like-digital-makeup-2014-8
3 Pekko Vehvläinen
https://www.facebook.com/groups/TuVaDi/ dikaalt/permalink/61801044892972/ 0

22 Hologram-projected in mid-air
http://www.bitrebel.com/technology/realsearch-mid-
air-holography-station/
http://www.youtube.com/watch?v=2OdBV/r47CM
3 Harri Fela
https://www.facebook.com/groups/TuVaDi/ dikaalt/permalink/47048417604127/ 0

23 Touchable holograms with
femtosecond laser
http://www.youtube.com/watch?v=tred9F
http://www.youtube.com/watch?v=2OdBV/r47CM
3 Kari Vahtila
https://www.facebook.com/groups/TuVaDi/ dikaalt/permalink/79506906011912/ 0

23 Haptic interfaces with ultrasound (WV)
http://www.youtube.com/watch?v=tred9F
http://www.youtube.com/watch?v=2OdBV/r47CM
3 Kari Vahtila
https://www.facebook.com/groups/TuVaDi/ dikaalt/permalink/71249222201772/ 0

23 Haptic interface in the air with ultrasound
http://www.youtube.com/watch?v=2OdBV/r47CM
http://www.youtube.com/watch?v=tred9F
3 Jouini Laveri
https://www.facebook.com/groups/TuVaDi/ dikaalt/permalink/47129069319111/ 0

23 Touchable holograms in mid-
air
http://www.youtube.com/watch?v=tred9F
http://www.youtube.com/watch?v=2OdBV/r47CM
3 Risto Linturi, Kari Vahtila
https://www.facebook.com/groups/TuVaDi/ dikaalt/permalink/86104087434682/ 0

23 Interfaces based on feeling of
touch
http://www.youtube.com/watch?v=2OdBV/r47CM
http://www.youtube.com/watch?v=tred9F
3 Harri Fela
https://www.facebook.com/groups/TuVaDi/ dikaalt/permalink/47048417604127/ 0

23 Finnish developer of haptic
technology
http://www.youtube.com/watch?v=tred9F
http://www.youtube.com/watch?v=2OdBV/r47CM
3 Harri Fela
https://www.facebook.com/groups/TuVaDi/ dikaalt/permalink/47048417604127/ 0

24 Large haptic screens
http://www.youtube.com/watch?v=tred9F
http://www.youtube.com/watch?v=2OdBV/r47CM
3 Harri Fela
https://www.facebook.com/groups/TuVaDi/ dikaalt/permalink/47048417604127/ 0

25 Internal organs in digital
mirror
http://www.youtube.com/watch?v=tred9F
http://www.youtube.com/watch?v=2OdBV/r47CM
3 Jarmo Heimo
https://www.facebook.com/groups/TuVaDi/ dikaalt/permalink/55331861436691/ 0

25 Digital mirror
http://www.youtube.com/watch?v=tred9F
http://www.youtube.com/watch?v=2OdBV/r47CM
3 Jarmo Heimo
https://www.facebook.com/groups/TuVaDi/ dikaalt/permalink/55331861436691/ 0

26 Brain to brain connection
http://www.youtube.com/watch?v=tred9F
http://www.youtube.com/watch?v=2OdBV/r47CM
1 Kari Alanne
https://www.facebook.com/groups/TuVaDi/ dikaalt/permalink/796193420448366/ 0

26 Flexible, permanent EEG
sensor
http://www.youtube.com/watch?v=tred9F
http://www.youtube.com/watch?v=2OdBV/r47CM
1 Kari Vahtila
https://www.facebook.com/groups/TuVaDi/ dikaalt/permalink/73900336379725/ 0

26 Direct control by the brain
http://www.youtube.com/watch?v=tred9F
http://www.youtube.com/watch?v=2OdBV/r47CM
1 Aleks Kross
https://www.facebook.com/groups/TuVaDi/ dikaalt/permalink/73906748710860/ 0

26 Direct brain connection
http://www.youtube.com/watch?v=tred9F
http://www.youtube.com/watch?v=2OdBV/r47CM
1 Pekko Vehvläinen
https://www.facebook.com/groups/TuVaDi/ dikaalt/permalink/66420188036188/ 0

26 Controlling of robot hand with
thoughts
http://www.youtube.com/watch?v=tred9F
http://www.youtube.com/watch?v=2OdBV/r47CM
1 Pekko Vehvläinen
https://www.facebook.com/groups/TuVaDi/ dikaalt/permalink/66420188036188/ 0

26 Control by the brain
http://www.youtube.com/watch?v=tred9F
http://www.youtube.com/watch?v=2OdBV/r47CM
1 Pekko Vehvläinen
https://www.facebook.com/groups/TuVaDi/ dikaalt/permalink/66420188036188/ 0

26 Smart glasses controlled by
thoughts
http://www.youtube.com/watch?v=tred9F
http://www.youtube.com/watch?v=2OdBV/r47CM
1 Pekko Vehvläinen
https://www.facebook.com/groups/TuVaDi/ dikaalt/permalink/66420188036188/ 0

26 Holograms monitored from
brain and actions based on them
http://www.youtube.com/watch?v=tred9F
http://www.youtube.com/watch?v=2OdBV/r47CM
1 Risto Linturi
https://www.facebook.com/groups/TuVaDi/ dikaalt/permalink/597406267043650/ 0

26 Graphene implants in the
brain
http://www.youtube.com/watch?v=tred9F
http://www.youtube.com/watch?v=2OdBV/r47CM
1 Risto Linturi
https://www.facebook.com/groups/TuVaDi/ dikaalt/permalink/597406267043650/ 0

26 Technological...
<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Author(s)</th>
<th>Link</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>Brain control by laser</td>
<td>Karl Vahitola</td>
<td>https://www.facebook.com/groups/TuVRa/dikaalit/permalink/710977482353194/</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>Flexible and transparent screens using cheap materials</td>
<td>2014 Report by the Committee for the Future</td>
<td>https://www.facebook.com/groups/TuVRa/dikaalit/permalink/710977482353194/</td>
<td>2</td>
</tr>
<tr>
<td>28</td>
<td>Solu cloud computing terminal</td>
<td>2014 Report by the Committee for the Future</td>
<td>https://www.facebook.com/groups/TuVRa/dikaalit/permalink/710977482353194/</td>
<td>2</td>
</tr>
<tr>
<td>29</td>
<td>Grid computing</td>
<td>2014 Report by the Committee for the Future</td>
<td>https://www.facebook.com/groups/TuVRa/dikaalit/permalink/710977482353194/</td>
<td>2</td>
</tr>
<tr>
<td>30</td>
<td>PV calculator from satellite image</td>
<td>2014 Report by the Committee for the Future</td>
<td>https://www.facebook.com/groups/TuVRa/dikaalit/permalink/710977482353194/</td>
<td>2</td>
</tr>
<tr>
<td>31</td>
<td>Optical GST memory circuit</td>
<td>2014 Report by the Committee for the Future</td>
<td>https://www.facebook.com/groups/TuVRa/dikaalit/permalink/710977482353194/</td>
<td>2</td>
</tr>
<tr>
<td>32</td>
<td>AI learns to cook from video</td>
<td>2014 Report by the Committee for the Future</td>
<td>https://www.facebook.com/groups/TuVRa/dikaalit/permalink/710977482353194/</td>
<td>2</td>
</tr>
<tr>
<td>33</td>
<td>Optical cancer detection</td>
<td>2014 Report by the Committee for the Future</td>
<td>https://www.facebook.com/groups/TuVRa/dikaalit/permalink/710977482353194/</td>
<td>2</td>
</tr>
<tr>
<td>34</td>
<td>Image recognition into text</td>
<td>2014 Report by the Committee for the Future</td>
<td>https://www.facebook.com/groups/TuVRa/dikaalit/permalink/710977482353194/</td>
<td>2</td>
</tr>
<tr>
<td>35</td>
<td>Stroke anticipation</td>
<td>2014 Report by the Committee for the Future</td>
<td>https://www.facebook.com/groups/TuVRa/dikaalit/permalink/710977482353194/</td>
<td>2</td>
</tr>
<tr>
<td>36</td>
<td>AI, Google deep learning</td>
<td>2014 Report by the Committee for the Future</td>
<td>https://www.facebook.com/groups/TuVRa/dikaalit/permalink/710977482353194/</td>
<td>2</td>
</tr>
<tr>
<td>37</td>
<td>AI learns to cook from video</td>
<td>2014 Report by the Committee for the Future</td>
<td>https://www.facebook.com/groups/TuVRa/dikaalit/permalink/710977482353194/</td>
<td>2</td>
</tr>
<tr>
<td>38</td>
<td>Deep learning AI</td>
<td>2014 Report by the Committee for the Future</td>
<td>https://www.facebook.com/groups/TuVRa/dikaalit/permalink/710977482353194/</td>
<td>2</td>
</tr>
<tr>
<td>39</td>
<td>Words read from thoughts</td>
<td>2014 Report by the Committee for the Future</td>
<td>https://www.facebook.com/groups/TuVRa/dikaalit/permalink/710977482353194/</td>
<td>2</td>
</tr>
<tr>
<td>40</td>
<td>Smartphone detects Parkinson’s disease</td>
<td>2014 Report by the Committee for the Future</td>
<td>https://www.facebook.com/groups/TuVRa/dikaalit/permalink/710977482353194/</td>
<td>2</td>
</tr>
<tr>
<td>41</td>
<td>Breakthrough of machine vision</td>
<td>2014 Report by the Committee for the Future</td>
<td>https://www.facebook.com/groups/TuVRa/dikaalit/permalink/710977482353194/</td>
<td>2</td>
</tr>
<tr>
<td>42</td>
<td>DR Watson</td>
<td>2014 Report by the Committee for the Future</td>
<td>https://www.facebook.com/groups/TuVRa/dikaalit/permalink/710977482353194/</td>
<td>2</td>
</tr>
<tr>
<td>43</td>
<td>Thoughts converted into words</td>
<td>2014 Report by the Committee for the Future</td>
<td>https://www.facebook.com/groups/TuVRa/dikaalit/permalink/710977482353194/</td>
<td>2</td>
</tr>
<tr>
<td>44</td>
<td>Deep learning models</td>
<td>2014 Report by the Committee for the Future</td>
<td>https://www.facebook.com/groups/TuVRa/dikaalit/permalink/710977482353194/</td>
<td>2</td>
</tr>
<tr>
<td>45</td>
<td>Pattern recognition and pattern search services</td>
<td>2014 Report by the Committee for the Future</td>
<td>https://www.facebook.com/groups/TuVRa/dikaalit/permalink/710977482353194/</td>
<td>2</td>
</tr>
<tr>
<td>46</td>
<td>Bioimage informatics</td>
<td>2014 Report by the Committee for the Future</td>
<td>https://www.facebook.com/groups/TuVRa/dikaalit/permalink/710977482353194/</td>
<td>2</td>
</tr>
<tr>
<td>47</td>
<td>AI looks for hidden cancer links in patient records</td>
<td>2014 Report by the Committee for the Future</td>
<td>https://www.facebook.com/groups/TuVRa/dikaalit/permalink/710977482353194/</td>
<td>2</td>
</tr>
<tr>
<td>48</td>
<td>Inexpensive 3D imaging</td>
<td>2014 Report by the Committee for the Future</td>
<td>https://www.facebook.com/groups/TuVRa/dikaalit/permalink/710977482353194/</td>
<td>2</td>
</tr>
<tr>
<td>49</td>
<td>3D model using Kinect Fusion</td>
<td>2014 Report by the Committee for the Future</td>
<td>https://www.facebook.com/groups/TuVRa/dikaalit/permalink/710977482353194/</td>
<td>2</td>
</tr>
<tr>
<td>50</td>
<td>More precise 3D imaging by exploiting polarisation</td>
<td>2014 Report by the Committee for the Future</td>
<td>https://www.facebook.com/groups/TuVRa/dikaalit/permalink/710977482353194/</td>
<td>2</td>
</tr>
<tr>
<td>51</td>
<td>Effortless 3D imaging of parts</td>
<td>2014 Report by the Committee for the Future</td>
<td>https://www.facebook.com/groups/TuVRa/dikaalit/permalink/710977482353194/</td>
<td>2</td>
</tr>
</tbody>
</table>

Note: The links provided are for the sake of example and may not be active or relevant to the context of the document.
32 3D-filmed video
https://www.facebook.com/schrep/videos/10153738792764443/?hc_location=fl
3 Janne Mähönen
https://www.facebook.com/groups/TuVuRa/diskait/permalink/852188738320267/
0
32 Nokia OZO VR camera
3 Risto Linturi
https://www.facebook.com/groups/TuVuRa/diskait/permalink/8042962302118/
0
32 Sound camera for development of mechanics
1 Kari Vahtiala
https://www.facebook.com/groups/TuVuRa/diskait/permalink/72140408310534/
0
32 Google Tango 3D device
http://www.google.com/atap/projecttango/
3 Paul Godsmark
https://www.facebook.com/groups/TuVuRa/diskait/permalink/667485612074340/
0
32 Google Tango (3D modelling) in quadcopter
http://www.google.com/atap/projecttango/
3 Ilkka Nojonen
https://www.facebook.com/groups/TuVuRa/diskait/permalink/57148702680241/
0
32 Google Tango
http://www.google.com/atap/projecttango/
3 Peikka Salokannel
https://www.facebook.com/groups/TuVuRa/diskait/permalink/52548019756991/
0
32 Nokia OZO VR camera $60K
http://www.pcmag.com/article2/0,2817,2495939,00.asp
3 Risto Linturi
https://www.facebook.com/groups/TuVuRa/diskait/permalink/85971427749518/
0
32 Real time 3D-modelling of the environment
2014 Report by the Committee
3 for the Future
5
32 360-modelling of sounds in the environment
https://meta360.com/en/
3 Peikka Koteloa
https://www.facebook.com/groups/TuVuRa/diskait/permalink/888997017848572/
0
33 Daily global picture
http://www.yle.fi/uutiset/suomessa_kehitettiin_ainutlaatuinen_ekho-technologia
3 Esa Turtiainen
https://www.facebook.com/groups/TuVuRa/diskait/permalink/842699795180965/
0
33 All of Denmark in Minecraft
2014 Report by the Committee
2 for the Future
2
34 AI creativity, self-organising data
2 Aleksi Rossi
https://www.facebook.com/groups/TuVuRa/diskait/permalink/784944531623155/
0
34 Predictive analytics based on self-organising data
2014 Report by the Committee
2 for the Future
2
35 Graphene memory circuit
3 Risto Linturi
https://www.facebook.com/groups/TuVuRa/diskait/permalink/844845465331262/
0
35 Memristor processor
http://fortune.com/2015/09/03/memristor-brain-like-chips/
3 Kari Alanne
https://www.facebook.com/groups/TuVuRa/diskait/permalink/82327984551481/
0
35 128 Gbit of fast memory on a circuit
3 Risto Linturi
https://www.facebook.com/groups/TuVuRa/diskait/permalink/80444527639747/
0
35 Magnetic memory of graphene
6 Kari Vahtiala
https://www.facebook.com/groups/TuVuRa/diskait/permalink/712322735177515/
0
35 Associative circuit (IBM)
3 Tuutti Kund
https://www.facebook.com/groups/TuVuRa/diskait/permalink/694228217361454/
0
35 Million neurons on IBM circuit
http://www.nature.com/news/2015/10/150727-acuheine neuroscience- confession-
3 Vilho Ahola
https://www.facebook.com/groups/TuVuRa/diskait/permalink/61228271888318/
0
35 HP640TB cpu & memory unit?
3 Jarmo Heimo
https://www.facebook.com/groups/TuVuRa/diskait/permalink/584558008384276/
0
35 Memristor background
3 Risto Linturi
0
35 Supermyriond of a quartz crystal
3 Jarmo Heimo
https://www.facebook.com/groups/TuVuRa/diskait/permalink/553774444796366/
0
35 Spintronics improve energy efficiency of ICT
6 Risto Linturi
https://www.facebook.com/groups/TuVuRa/diskait/permalink/533963701573071/
0
35 Memristor from Finland
3 Risto Linturi
https://www.facebook.com/groups/TuVuRa/diskait/permalink/863099004867454/
0
35 Universal memory based on new materials and solutions
2014 Report by the Committee
3 for the Future
4
35 Racetrack memory making progress
6 Risto Linturi
https://www.facebook.com/groups/TuVuRa/diskait/permalink/878374944523108/
0
35 360 TB memory crystal fabricated
3 Risto Linturi
https://www.facebook.com/groups/TuVuRa/diskait/permalink/988002102373756/
0
36 Functional mechanism of memory
7 Peikka Neva
https://www.facebook.com/groups/TuVuRa/diskait/permalink/840744116043196/
0
36 Simulation of rat brain
2 Risto Linturi
https://www.facebook.com/groups/TuVuRa/diskait/permalink/838479862738009/
0
36 Modelling/printing of the brain
2 Karl Alanne
https://www.facebook.com/groups/TuVuRa/diskait/permalink/811405623089885/
0
36 Talent from brain damage
http://www.nrc.ca/taxonomy/term/552
7 Karl Alanne
https://www.facebook.com/groups/TuVRa
permalink/56329340545928/
2014 Report by the Committee
2 for the Future
0

36 Circuit imitates the brain
http://www.isi.edu/ptl/paralel/3.html
2 Risto Linturi
https://www.facebook.com/groups/TuVRa
permalink/560016270782605/
2014 Report by the Committee
2 for the Future
0

36 Emulation of brain (IBM)
http://www.youtube.com/watch?v=tepLG0iiI7s
2 Antti Halonen
https://www.facebook.com/groups/TuVRa
permalink/492467414204203/
2014 Report by the Committee
2 for the Future
0

36 Neuroprocessors
http://readwrite.com/2013/10/25/Neural-processing-unit
3 Antti Halonen
https://www.facebook.com/groups/TuVRa
permalink/492447295739548/
2014 Report by the Committee
2 for the Future
0

36 Simulation and mapping of the brain
2014 Report by the Committee
2 for the Future
4

36 Digital neuron interface in the pipeline (IDARPA)
1 Peikka Neva
https://www.facebook.com/groups/TuVRa
permalink/885719308127483/
2014 Report by the Committee
2 for the Future
0

36 Revealing the memory structures of the brain
http://gizmodo.com/our-brains-can-store-10-times-more-information-than-we-157455335
7 Risto Linturi
https://www.facebook.com/groups/TuVRa
permlink/8857554487397/
2014 Report by the Committee
2 for the Future
0

37 Quantum computer
http://www.computer.org/portal/web/ctgrow/quantum-compute-breakthrough-paving-way-for-world-first
3 Kari Alanne
https://www.facebook.com/groups/TuVRa
permlink/81685813976127/
2014 Report by the Committee
2 for the Future
0

37 Quantum computer on silicon
3 Harri Vartiainen
https://www.facebook.com/groups/TuVRa
permlink/8194019028488/
2014 Report by the Committee
2 for the Future
0

37 Quantum computer-proof encryption
3 Esa Turunen
https://www.facebook.com/groups/TuVRa
permlink/805436703967247/
2014 Report by the Committee
2 for the Future
0

37 Multicore processors
http://queriesod.org/tech-talk/computing/hardware/multi-core-processor-chips
3 Kari Vahitla
https://www.facebook.com/groups/TuVRa
permlink/8293970722417/
2014 Report by the Committee
2 for the Future
0

37 Development trends in computing performance
http://intelligence.org/2014/05/12/exponential-and-non-exponential/
3 Kaj Sotala
https://www.facebook.com/groups/TuVRa
permlink/565619200222685/
2014 Report by the Committee
2 for the Future
0

37 Quantum computer – photon switch
3 Risto Linturi
https://www.facebook.com/groups/TuVRa
permlink/548820641902113/
2014 Report by the Committee
2 for the Future
0

37 Quantum computer (Google)
http://www.engineertechx.com/extrm/201411030.google-quantum-computer-is-100-million-times-faster-than-a-conventional-system
3 Risto Linturi
https://www.facebook.com/groups/TuVRa
permlink/863500493767558/
2014 Report by the Committee
2 for the Future
0

37 Quantum computers
2014 Report by the Committee
2 for the Future
4

38 Solid State LiDAR
1 Peikka Neva
https://www.facebook.com/groups/TuVRa
permlink/82288774499397/
2014 Report by the Committee
2 for the Future
0

38 Low-cost Lidar for braking
3 Kari Vahitla
https://www.facebook.com/groups/TuVRa
permlink/77880192327413/
2014 Report by the Committee
2 for the Future
0

38 OPAL lidar for difficult conditions
1 Risto Linturi
https://www.facebook.com/groups/TuVRa
permlink/71180689270553/
2014 Report by the Committee
2 for the Future
0

38 Lidar vs Radar
1 Ikka Nojonen
https://www.facebook.com/groups/TuVRa
permlink/59854564233046/
2014 Report by the Committee
2 for the Future
0

38 Low-cost Lidar
1 Tuomas Santakallio
https://www.facebook.com/groups/TuVRa
permlink/859278367931664/
2014 Report by the Committee
2 for the Future
0

38 Cheap Lidar
1 Tuomas Santakallio
https://www.facebook.com/groups/TuVRa
permlink/859278367931664/
2014 Report by the Committee
2 for the Future
0

38 Low-cost $250 ‘solid state’ LidAR
1 Kari Vahitla
https://www.facebook.com/groups/TuVRa
permlink/87893836521102/
2014 Report by the Committee
2 for the Future
0

38 GPS tracking down to the centimetre
http://www.sciencedaily.com/releases/2016/02/160211111115.htm
1 Kari Vahitla
https://www.facebook.com/groups/TuVRa
permlink/69923000260532/
2014 Report by the Committee
2 for the Future
0

39 FlatCam lenseless imaging
3 Peikka Pasanen
https://www.facebook.com/groups/TuVRa
permlink/85707564410071/
2014 Report by the Committee
2 for the Future
0

39 Lenseless imaging
3 Peikka Pasanen
https://www.facebook.com/groups/TuVRa
permlink/85707564410071/
2014 Report by the Committee
2 for the Future
0

39 Computational FlatCam
3 Kimo Vartiovaara
https://www.facebook.com/groups/TuVRa
permlink/71486148655661/
2014 Report by the Committee
2 for the Future
0

39 Lenseless camera and image construction based on data analysis
3 Peikka Pasanen
https://www.facebook.com/groups/TuVRa
permlink/85707564410071/
2014 Report by the Committee
2 for the Future
0

39 Hyperspectral camera
http://www.tiede.fi/artikkelit/uutiset/hyperspektrikaamera_vas_kutistaja_kamppiokaeloon
1 Harri Vartiainen
https://www.facebook.com/groups/TuVRa
permalink/841997427584277/
2014 Report by the Committee
2 for the Future
0

40 Nanometer-level imaging
1 Kari Vahitla
https://www.facebook.com/groups/TuVRa
permlink/84307640034477/
2014 Report by the Committee
2 for the Future
0
40 Nanospectroscopy
http://www.nature.com/nano/journal/vaop/ncurre
nt/full/nnano.2015.168.html
Kari Vahtiala
https://www.facebook.com/groups/TuVRa

dikaalit/permalink/685138647421294/0

40 'Quick' NanoMRI
http://spectrum.ieee.org/nanoclast/biomedical/imagi
ng/new-technique-brings-nanomri-a-step-closer-to-
commercial-applications
Kari Vahtiala
https://www.facebook.com/groups/TuVRa

dikaalit/permalink/7707299507697/0

40 Nanoscale metamaterial lens
http://www.buffalo.edu/news/releases/2015/05/039
.html
Kari Vahtiala
https://www.facebook.com/groups/TuVRa

dikaalit/permalink/7707357963770/0

40 Material radar in Finland
http://www.teknika24.com/nn/2015/mars/vastuun-
ennistaminen-rajan-pystytt%C3%A4m%C3%A4-
v%C3%A4lij%C3%A4ytyksen-tarkkuudesta
Kari Vahtiala
https://www.facebook.com/groups/TuVRa

dikaalit/permalink/708056026003/0

40 Food scanner
http://www.indiegogo.com/projects/hellispec-what-s-
in-your-food
Antti Tulonen
https://www.facebook.com/groups/TuVRa

dikaalit/permalink/6209836381087/0

40 Monitoring of humans [vital signs] through walls
http://newsroom.mit.edu/2014/could-wireless-
replace-wearables
Kaj Sotala
https://www.facebook.com/groups/TuVRa

dikaalit/permalink/5612406438537/0

40 SCIO material radar
http://edition.cnn.com/2014/05/02/tech/innovation/-
molecular-sensor-fits-in-your-hand/
Risto Linturi
https://www.facebook.com/groups/TuVRa

dikaalit/permalink/5658595075738/0

40 Comprehensive set of blood tests optically
http://www.scienceworldreport.com/articles/13249/
20140303/completemedicalcheck-up-chip.htm
Risto Linturi
https://www.facebook.com/groups/TuVRa

dikaalit/permalink/5141579030905/0

40 Near-real time nanoscale 3D video
http://www.eurekalert.org/pub_releases/2015-
12/niet-mcm21451.htm
Kari Vahtiala
https://www.facebook.com/groups/TuVRa

dikaalit/permalink/864795567713/0

40 'Material Radar' 2014 Report by the Committee
1 for the Future
5

40 Optical laboratory
http://www.scienceworldreport.com/articles/13249/
20140303/completemedicalcheck-up-chip.htm
Kari Vahtiala
https://www.facebook.com/groups/TuVRa

dikaalit/permalink/8106145727333/0

41 Gas measurement
http://www.teknika24.com/nn/2015/04/gas-
gasmessuus-carkeliitissu-tunnistaa-smell sings-
a-homeautosיין+tuurattavaisen+atena20160
Kari Vahtiala
http://www.teknika24.com/nn/innovatorc-
sensoren-our-ear-in-our-clothes-may-warn-us-
environmental-hazards-180956177
Kari Vahtiala
http://www.teknika24.com/nn/innovatorc-
sensoren-our-ear-in-our-clothes-may-warn-us-
environmental-hazards-180956177
Pekka Neiva
https://www.facebook.com/groups/TuVRa

dikaalit/permalink/6106145727333/0

41 Gas sensors in clothes
http://www.teknika24.com/nn/innovatorc-
sensoren-our-ear-in-our-clothes-may-warn-us-
environmental-hazards-180956177
Kari Vahtiala
http://www.teknika24.com/nn/innovatorc-
sensoren-our-ear-in-our-clothes-may-warn-us-
environmental-hazards-180956177
Pekka Neiva
https://www.facebook.com/groups/TuVRa

dikaalit/permalink/6106145727333/0

41 Recognition of mold spores
http://www.eurekalert.org/pub_releases/2015-
04/us-gal-214561.htm
Kari Vahtiala
https://www.facebook.com/groups/TuVRa

dikaalit/permalink/7722414956000/0

41 Small gas chromatograph
http://themindunleashed.org/2014/06/first-scnt-
message-transmitted-across-the-atlantic-via-the-
internet.html
Jarmo Heimo
http://www.teknika24.com/nn/innovatorc-
sensoren-our-ear-in-our-clothes-may-warn-us-
environmental-hazards-180956177
Jarmo Heimo
http://www.teknika24.com/nn/innovatorc-
sensoren-our-ear-in-our-clothes-may-warn-us-
environmental-hazards-180956177
https://www.facebook.com/groups/TuVRa

dikaalit/permalink/6106145727333/0

41 Small digitalisation and printing
https://www.facebook.com/groups/TuVRa

dikaalit/permalink/5605895075738/0

41 Artificial nose smells cancer
http://www.eurekalert.org/pub_releases/2015-
04/pt-il/040915.php
Jarmo Heimo
https://www.facebook.com/groups/TuVRa

dikaalit/permalink/9878535032867/0

41 Cheap gas sensors
http://www.eurekalert.org/pub_releases/2015-04/pt-
il/040915.php
Jarmo Heimo
https://www.facebook.com/groups/TuVRa

dikaalit/permalink/9878535032867/0

41 Scents digitalised and reproduced
https://www.facebook.com/groups/TuVRa

dikaalit/permalink/7514593196892/0

41 Accurate NO2 detection with graphene oxide
http://pubs.rsc.org/en/Content/Articlelanding/2014/
NR/c4nr00332b
Jarmo Heimo
https://www.facebook.com/groups/TuVRa

dikaalit/permalink/8106145727333/0

41 Very sensitive camera sensors based on nanocarbons
-League
Harii Vartiainen
https://www.facebook.com/groups/TuVRa

dikaalit/permalink/7201097477130/0

42 Image cells in quick development
505
Harii Vartiainen
https://www.facebook.com/groups/TuVRa

dikaalit/permalink/8106145727333/0

41 Inkjet-printed flexible electronics
http://www.eurekalert.org/pub_releases/2015-
05/pt-il/050915.php
Jarmo Heimo
https://www.facebook.com/groups/TuVRa

dikaalit/permalink/9878535032867/0

43 Graphene biosensor
http://www.eurekalert.org/pub_releases/2015-03/gb-
uber-mcd20150309.htm
Kari Vahtiala
https://www.facebook.com/groups/TuVRa

dikaalit/permalink/7040833962677/0

43 Printed cheap biosensors
http://www.nature.com/nano/journal/vaop/ncurre
nt/full/nnano.2015.168.html
Kari Vahtiala
https://www.facebook.com/groups/TuVRa

dikaalit/permalink/8106145727333/0

43 Roll-to-roll electronics evolve
http://spectrum.ieee.org/tech-talk/semiconductors/
materials/roll-to-roll-electronics-manufacturing-
evals/dr
Kari Vahtiala
https://www.facebook.com/groups/TuVRa

dikaalit/permalink/7201097477130/0

43 Microcircuit on nanocellulose paper
http://spectrum.ieee.org/tech-talk/semiconductors/
materials/roll-to-roll-electronics/portable-devices/green-microchips-
created-on-cellulose-nanofibril-paper
Kari Vahtiala
https://www.facebook.com/groups/TuVRa

dikaalit/permalink/7707299507697/0

44 Tunable nanolaser & THz
http://www.nature.com/commits/2015/150420/no-
comm/7939/full/commits/7939.html
Kari Vahtiala
https://www.facebook.com/groups/TuVRa

dikaalit/permalink/7707299507697/0

44 Terahertz imaging
http://www.eurekalert.org/pub_releases/2015-08/ft-
uber-080615.php
Kari Vahtiala
https://www.facebook.com/groups/TuVRa

dikaalit/permalink/808220326487/0

44 THz-amplifier
http://www.nature.com/commits/2015/150420/no-
comm/7939/full/commits/7939.html
Kari Vahtiala
https://www.facebook.com/groups/TuVRa

dikaalit/permalink/7520367251380/0

44 THz in spectroscopy
Kari Vahtiala
https://www.facebook.com/groups/TuVRa

dikaalit/permalink/7394194261754/0
14
46 1- or 2-wheeled vehicles for personal or goods traffic
47 Quadcopter delivery http://en.reuters.com/article/2015/10/27/wall-mart-stores-drones-idUSKCN0UL8120151027 Risto Linturi 4 0
47 Tracking of quadcopters https://www.vtec.com/robotics/vernon-and-nasa-are-developing-a-system-to-track-drones/ Peikka Vehviläinen 4 0
47 Public transport and quadcopters https://www.facebook.com/worldbulletin/videos/1136276593699437/?ref=nf Arvo Kukko 4 0
47 Quadcopters build a rope bridge http://www.bbc.co.uk/news/technology-34327364 Aulikki Holma, Vilho Ahola, Petja Jappinen 5 0
47 Quadcopters in farming http://www.youtube.com/watch?v=E2stferhRgU Marita Kaatara 7 0
47 Quadcopter test by Posti http://www.posti.fi/lennot/ Risto Linturi 4 0
47 Risto Linturi 5 0
47 Armed quadcopter http://www.bbc.co.uk/avrones/2015/09/07-quadcopter-deliveries-DHL Peikka Vehviläinen 4 0
47 Hoverboard with quadcopter http://www.youtube.com/watch?v=kXzS26hFucz&feature=youtu.be Ville Nikkisen 4 0
47 Quadcopter saving lives http://www.facebook.com/groups/TuRaKaita/permalink/73885082898467/ Esa Heiskanen 4 0
47 Quadcopter regulation in the USA http://econ.st/1B4ywgh Jarmo Heimo 4 0
47 Quadcopter defibrillator http://www.newscientist.com/article/mg22429952-4-ox-block-one-simply-melts-away-then-it-crashes.html Harri Vartiaisen 4 0
47 Biodegradable body material in quadcopter http://www.facebook.com/groups/TuRaKaita/permalink/763427667108175/ Harri Vartiaisen 4 0
47 Quadcopters for medical deliveries (DHL) http://online.wsj.com/articles/deutsche-post-dhl-to-deliver-medicine-via-drone-1415786611 Ilkka Kakko 4 0
47 Quadcopter delivery in 2017 http://www.ted.com/talks/a_robot_that_flies_like_a_bird.html Risto Linturi, Olli Hietanen 4 0
47 Drone fighter http://gizmodo.com/unmanned-drones-landing-autonomously-next-to-f-18c-is-a-1623368962 Ilkka Kakko 4 0
47 EU-RPAS (drone) regulation http://www.facebook.com/download/139769446050895/NA/vm.2015-04.pd Mikko Saarasilta 4 0
47 FAA to launch drone tests http://www.youtube.com/watch?v=E32zeh98G1q Risto Linturi 4 0
47 Festo robotic bird http://www.ted.com/talks/a_robot_that_flies_like_a_bird.html Risto Linturi, Olli Hietanen 4 0
47 Amazon’s quadcopter announcement in 2013 http://www.forbes.com/sites/detroit/articles/2013-12-31/what-the-french-know-about-drones-that-americans-dont-t Ilkka Kakko 4 0
47 Autonomous quadcopters https://www.youtube.com/watch?v=07H8M37maX0 Risto Linturi 4 0
47 Google to start quadcopter delivery in 2017 http://www.google.com/about/drones/ Risto Linturi 4 0
47 Amazon’s quadcopter with hybrid design http://www.facebook.com/worldbulletin/videos/1136276593699437/?ref=nf Tapani Alasaarela 4 0
47 Quadcopters 2014 Report by the Committee for the Future 4 0
47 Tree planting by quadcopters – at 15% of current cost http://www.mscience.com/environment/terrestrial-plant/1-billion-trees-year-using-drones Esok Nuutila 4 0

15
51 Law on the rights of space miners (USA)
4 Risto Linturi
https://www.facebook.com/groups/TuVRa-dialog/permalink/892257817558492/
0

51 EM Drive
4 Seppo Nikkila
https://www.facebook.com/groups/TuVRa-dialog/permalink/8498681846395/
0

51 Ion space drive
http://nextbifuture.com/2015/09/new-ion-drive-achieves-14600-tsp-which.html
4 Peikka Neva
https://www.facebook.com/groups/TuVRa-dialog/permalink/832982270152714/
0

51 Nanjet
4 Peikka Neva
https://www.facebook.com/groups/TuVRa-dialog/permalink/818441224940152/
0

51 Ionic thruster
http://newsroom.mtu.edu/2013/ionic-thrusters-0403
4 Henri Heinonen
https://www.facebook.com/groups/TuVRa-dialog/permalink/693521257432150/
0

51 Nasa EmDrive (unverified)
http://blogs.discovermagazine.com/outhere/2014/03/06/nasa-validate-impossible-space-drive-world-record/
4 Jani Ehro
https://www.facebook.com/groups/TuVRa-dialog/permalink/608745765909900/
0

52 Glider at 30 km
4 Risto Linturi
https://www.facebook.com/groups/TuVRa-dialog/permalink/81285341498440/
0

52 Google’s base station balloons
http://bit.ly/1LD94b3
4 Ilkka Nojonen
https://www.facebook.com/groups/TuVRa-dialog/permalink/80468596615678/
0

52 Attm satellites Facebook
https://www.facebook.com/suck/videos/10152274 15723301/
4 Ilkka Nojonen
https://www.facebook.com/groups/TuVRa-dialog/permalink/805024129615195/
0

52 Solar-powered 81-hour flight
http://www.theatlantic.com/technology/archive/2015/02/
4 Ilkka Nojonen
https://www.facebook.com/groups/TuVRa-dialog/permalink/804448299672778/
0

52 Atmospheric satellite (Facebook)
http://www.facebook.com/
4 Risto Linturi
https://www.facebook.com/groups/TuVRa-dialog/permalink/74238127932184/
0

52 Solar-powered aircraft around the world
http://www.solarpulse.com/
4 Peikka Vehviläinen
https://www.facebook.com/groups/TuVRa-dialog/permalink/731704226047186/
0

52 Google Project Loon
http://www.thereverse.com/2015/3/2/8130759/project-loon
4 Marko Mikael Tenkanen
https://www.facebook.com/groups/TuVRa-dialog/permalink/72818473396802/
0

52 Hovering carriers Darpa
http://upload.github.com/all-the-avengers-the-pentagon-wants-to-make-hellaric-1565986484
4 Peikka Vehviläinen
https://www.facebook.com/groups/TuVRa-dialog/permalink/660747350962/
0

52 Airship freight carrier
4 Esa Turttainen
https://www.facebook.com/groups/TuVRa-dialog/permalink/63737644346642/
0

52 Google Loon around the world in 22 days
4 Risto Linturi
https://www.facebook.com/groups/TuVRa-dialog/permalink/54702490411260/
0

52 Google Loon to India
http://thisbytes.google-project-loon-gets-indian-govt-in-principle-nod/
4 Risto Linturi
https://www.facebook.com/groups/TuVRa-dialog/permalink/72383179932814/
0

52 24h hybrid drone Airstrato
4 Peikka Neva
https://www.facebook.com/groups/TuVRa-dialog/permalink/87097715639225/
0

52 Light continuously flying equipments
2014 Report by the Committee
4 Risto Linturi
https://www.facebook.com/groups/TuVRa-dialog/permalink/892257817558492/
0

52 Atmospheric satellite aircraft Solara being tested
4 Risto Linturi, Peikka Neva
https://www.facebook.com/groups/TuVRa-dialog/permalink/88792488001795/
0

53 Raspberry Pi Zero S$
10 Risto Linturi
https://www.facebook.com/groups/TuVRa-dialog/permalink/88399760058965/
0

53 IOT adapters
http://www.susi.com/blog/susi-goes-bt-42.html
10 Kalle Pihlajasara
https://www.facebook.com/groups/TuVRa-dialog/permalink/88792488001795/
0

53 Raspberry Pi $35
10 Risto Linturi
https://www.facebook.com/groups/TuVRa-dialog/permalink/71379570276666/
0

53 Arduino/Raspberry Pi comparison
http://readwrite.com/2014/05/07/arduino-vs-raspberry-pi-projects-diy-platform
10 Tatu Lund, Risto Linturi
https://www.facebook.com/groups/TuVRa-dialog/permalink/66590345041120/
0

53 Open hardware
http://www.open-electronics.org/open-hardware-summit-2014-rome-from-making-open-to-open-manufacturing/
10 Matti Pyykkönen
https://www.facebook.com/groups/TuVRa-dialog/permalink/60239496548677/
0

53 EUR 134 robotic hand
http://www.wired.com/design/2014/03/kickstarter-robot-arm affects/
10 Risto Linturi
https://www.facebook.com/groups/TuVRa-dialog/permalink/5330488681372/
0

53 Modular robotics
2014 Report by the Committee
10 Risto Linturi
https://www.facebook.com/groups/TuVRa-dialog/permalink/81303783792736/
0

53 Inexpensive robotic hand Kata with 5 degrees of freedom
10 Karl Alanne
https://www.facebook.com/groups/TuVRa-dialog/permalink/81303783792736/
0
54 Personal robot
5 Kari Vahtiala
https://www.facebook.com/groups/TuVRadikaalit/permalink/712485865535689/0

54 A walking robot with hands

54 Walking robot equipped with hands in the woods and warehouse
https://www.facebook.com/ThinkInc.org.au/videos/1 072335462819210?ref=rnf
4 Risto Linturi
https://www.facebook.com/groups/TuVRadikaalit/permalink/90379476405126/0

55 Flying/swimming microrobot
4 Peikka Neva
https://www.facebook.com/groups/TuVRadikaalit/permalink/85378531396621/0

55 Cyber insect
http://www.popsci.com/article/technology/riser- insect-drones
4 Jussi Tunkkari
https://www.facebook.com/groups/TuVRadikaalit/permalink/n9775171709110/5

55 The cyber insect
2014 Report by the Committee for the Future

55 Robot cockroach, flexible structure
4 Jarmo Kuismanen
https://www.facebook.com/groups/TuVRadikaalit/permalink/893900473550839/0

56 Photo of a 3D printed lens
5 Pasi Vahimaa
https://www.facebook.com/groups/TuVRadikaalit/permalink/85711871071817/0

56 3D-printed cellulose
5 Kari Vahtiala
https://www.facebook.com/groups/TuVRadikaalit/permalink/85187206159708/0

56 3D-printed car
https://t.co/b4M42ykCTC
5 Peikka Neva
https://www.facebook.com/groups/TuVRadikaalit/permalink/83224470212494/0

56 Close manufacturing/Adidas
5 Peikka Neva
https://www.facebook.com/groups/TuVRadikaalit/permalink/843014841482790/0

56 Quick 3D-printing
http://wpo.st/T990
5 Risto Linturi
https://www.facebook.com/groups/TuVRadikaalit/permalink/735962630862113/0

56 Multimaterial extrusion
5 Kari Vahtiala
https://www.facebook.com/groups/TuVRadikaalit/permalink/83145154072453/0

56 3D-printed graphene
6 Kari Vahtiala
https://www.facebook.com/groups/TuVRadikaalit/permalink/81344409073198/0

56 3D colour coating method
http://www.eurekalert.org/pub_releases/2015-06/cuso-estb3215.php
5 Kari Vahtiala
https://www.facebook.com/groups/TuVRadikaalit/permalink/77507088404624/0

56 3D-printed lenses
http://www.geek.com/chips/voxel8-3d-printer-can-successfully-3d-print-a-knee-joint/
5 Risto Linturi
https://www.facebook.com/groups/TuVRadikaalit/permalink/74090744602686/0

56 3D printing of an electronic device
http://www.gizmodo.com/you-can-now-3d-print-a-fully-functional-speaker-144084187
5 Peikka Neva
https://www.facebook.com/groups/TuVRadikaalit/permalink/65978989999020/0

56 3D printing – market forecast 2020
5 Tatu Lund
https://www.facebook.com/groups/TuVRadikaalit/permalink/68558675376842/0

56 3D-printed knee joint
http://techcrunch.com/2014/10/17/watch-dentists-successfully-3d-print-a-knee-joint/
7 Tatu Lund
https://www.facebook.com/groups/TuVRadikaalit/permalink/68447576676993/0

56 HP MIF 3D printer
5 Risto Linturi
https://www.facebook.com/groups/TuVRadikaalit/permalink/659595961343013/0

56 Individual 3D printed products from Amazon
5 Peikka Vehviläinen
https://www.facebook.com/groups/TuVRadikaalit/permalink/67718889999020/0

56 3D-printing of lenses
5 Risto Linturi
https://www.facebook.com/groups/TuVRadikaalit/permalink/59370076748826/0

56 3D-printed carbon fibre cast
7 Peikka Vehviläinen
https://www.facebook.com/groups/TuVRadikaalit/permalink/558084300753147/0

56 3D-printed cars
http://www.wired.com/auto/paget/2014/03/edag-3-d-printed-car/mbm-social-twitter
5 Eetu Simpanen
https://www.facebook.com/groups/TuVRadikaalit/permalink/539006895350254/0

56 3D-printed titanium bicycle
http://www.ti-mag.com/ti-3d-printed-titanium-bicycle-frame/50766/5
tatuLund
https://www.facebook.com/groups/TuVRadikaalit/permalink/51756690838914/0

56 Growth of the 3D printer market
http://usfinancepost.com/3d-printer-market-is-about-to-grow-tenfold-in-next-four-years-11111.html
5 Risto Linturi
https://www.facebook.com/groups/TuVRadikaalit/permalink/49308507060930/0

56 HP MIF 3D printer
5 Risto Linturi
https://www.facebook.com/groups/TuVRadikaalit/permalink/659595961343013/0

56 Direct manufacturing, opinion on the future study for the Commerce Committee
5 Peikka Neva
https://www.facebook.com/groups/TuVRadikaalit/permalink/68528952338190/0

56 Minimisation of hydraulics (robot) through 3D-printing
http://www.technologyreview.com/view/544766/how-to-3-d-print-a-hydraulic-powered-robot/
5 Peikka Neva
https://www.facebook.com/groups/TuVRadikaalit/permalink/68447943270813/0

56 3D-printing of goods
2014 Report by the Committee for the Future
5 Kari Vahtiala
https://www.facebook.com/groups/TuVRadikaalit/permalink/889585480201925/0

56 Efficient 3-D printing of metals
5 Kari Vahtiala
https://www.facebook.com/groups/TuVRadikaalit/permalink/889585480201925/0
60 Surgical microscope. [link]
Risto Linturi [link]
2014 Report by the Committee
7 for the Future
0

60 Robotic surgery and other cutting of biological objects
Risto Linturi [link]
2014 Report by the Committee
7 for the Future
2

61 Sensitive robot hand
Jarno Hallikas [link]
https://www.facebook.com/groups/Tuomari/permalink/836348538134916/
0

61 Synthetic skin with sense of touch
Harri Vartiainen [link]
https://www.facebook.com/groups/Tuomari/permalink/682613416851753/
0

61 Sensitive robot fingers and hands capable of remote work
Risto Linturi [link]
2014 Report by the Committee
5 for the Future
2

61 Kitchen robot (high-quality hands)
http://beta.bbc.co.uk/static/0/2014/03/20140325/new-robotic-hand-respond-sensitively-hand/0/0/0/0.html
6 Olli Hetanen [link]
https://www.facebook.com/groups/Tuomari/permalink/595647507486693/
0

61 Sensitive robot fingers with artificial muscles
http://europe.fibereview.com/robotic-nagers-use-artificial-muscles-lift-eggs-without-breaking-them-
d217017mrew
Risto Linturi [link]
2014 Report by the Committee
6 for the Future
0

61 Sensitive robot hand for remote work
http://www.shadowrobot.com/products/dexterous-hand/
Risto Linturi [link]
https://www.facebook.com/groups/Tuomari/permalink/889972407786853/
0

62 Robo-tailoring
2014 Report by the Committee
5 for the Future
1

63 Water from air
http://mashable.com/2014/07/14/shape-shifting-fibres/
Kari Vahtila [link]
https://www.facebook.com/groups/Tuomari/permalink/745896965527912/
2

63 Nanosurface that convert air moisture to water
http://nextbigfuture.com/2013/12/a-micro-muscular-waste-in-space/
7 Harri Vartiainen [link]
https://www.facebook.com/groups/Tuomari/permalink/682613416851753/
0

64 Electronics in cyborg plant
http://gizmodo.com/scientists-have-created-a-cyborg-rose-1743933339
Risto Linturi [link]
https://www.facebook.com/groups/Tuomari/permalink/855847371199377/
0

64 Biobots
Risto Linturi [link]
2014 Report by the Committee
7 for the Future
3

64 Remote controller for camera-carrying cockroach
http://apc.org/2013/09/12/shape-shifting-metal-ally/
Risto Linturi [link]
https://www.facebook.com/groups/Tuomari/permalink/891054367806730/
0

65 Artificial muscle powered by moisture
http://www.popularmechanics.com/technology/2517173/shape-shifting-metal-ally/
Harri Vartiainen [link]
https://www.facebook.com/groups/Tuomari/permalink/774515185996023/
0

65 Shape-shifting materials from fibres
Kari Vahtila [link]
https://www.facebook.com/groups/Tuomari/permalink/745896965527912/
2

65 Artificial muscles – robotic hand
http://www.eurekalert.org/pub_releases/2015-02/graphic/hand/026915,en-us
Risto Linturi [link]
https://www.facebook.com/groups/Tuomari/permalink/742145009536441/
0

65 Synthetic muscle
Jouni Laveri [link]
https://www.facebook.com/groups/Tuomari/permalink/705470895706322/
0

65 Artificial muscles
http://mashable.com/2014/07/14/shape-shifting-robot/
Risto Linturi [link]
https://www.facebook.com/groups/Tuomari/permalink/660570873993866/
0

65 Biobot/artificial muscle
http://www.youtube.com/watch?v=skCF7FM34
Jouni Laveri [link]
https://www.facebook.com/groups/Tuomari/permalink/593507908263163/
0

65 Synthetic muscle 100 times stronger
http://www.lancet.com/journals/lancet/article/doi:20130912/lancet-20130912-
Risto Linturi [link]
https://www.facebook.com/groups/Tuomari/permalink/533595575787395/
0

65 Synthetic micromuscles
Risto Linturi [link]
https://www.facebook.com/groups/Tuomari/permalink/493436527540625/
0

65 Artificial muscles
http://www.smithsonianmag.com/innovation/this-plastic-heat-stiff-180956699/
Peppa Neva [link]
2014 Report by the Committee
6 for the Future
4

66 Self-healing plastic
http://www.smithsonianmag.com/innovation/this-plastic-heals-itself-180956699/
6 Peppa Neva [link]
https://www.facebook.com/groups/Tuomari/permalink/833505801097893/
0

66 Self-healing polymer
Risto Linturi [link]
https://www.facebook.com/groups/Tuomari/permalink/567151067337933/
0

66 Artificial self-renewing skin
Risto Linturi [link]
2014 Report by the Committee
6 for the Future
2

67 DNA memory
Risto Linturi [link]
2014 Report by the Committee
3 for the Future
2

67 DNA nanobots
Harri Vartiainen [link]
https://www.facebook.com/groups/Tuomari/permalink/741215609599432/
0

68 Cell simulation model
http://advances.sciencemag.org/2015/04/184703-
molecular-membranes/fulltext
Risto Linturi [link]
https://www.facebook.com/groups/Tuomari/permalink/497388867607056/
0
68 Artificial cell and simulating life on cell level
https://www.facebook.com/2014 Report by the Committee for the Future
7 for the Future
4

69 Vegetarian 'egg'
http://www.facebook.com/gary.yourskifsky/videos/R
9239267409315/?ref=rnd
7 Aleksi Rossi
https://www.facebook.com/groups/TuVRa
7 dikaispermaila/846282398822701/
0

69 Synthetic meat
7 Ilmari Määttänen
https://www.facebook.com/groups/TuVRa
7 dikaispermaila/844854918965449/
0

69 Imitation meat and its funding
https://www.facebook.com/gary.yourskifsky/videos/R
5D04D0404511209/?ref=rnd
7 Risto Linturi
https://www.facebook.com/groups/TuVRa
7 dikaispermaila/809940609127701/
0

69 Synthetic meat is becoming cheaper
7 Harri Vartianen
https://www.facebook.com/groups/TuVRa
7 dikaispermaila/74673158777816/
0

69 Vegetarian patty tastes like meat
http://www.sciencenews.org/news/20140910-
26310.html
7 Risto Linturi
0

69 Taste of meat for vegetarian
http://impossiblefoods.com/
7 Peikko Vehviläinen
https://www.facebook.com/groups/TuVRa
7 dikaispermaila/65034821780784/
0

69 In-vitro meat and meat-like plant protein
http://www.hs.fi/tiede/a14411688901547/tako=a29
b90e3386d06e33edcf391e6&ref=rw-share
7 2014 Report by the Committee for the Future
7 for the Future
4

70 Robotic legs for paralysed patients
http://www.hse.fi/tiede/a14411688901547/tako=a29
b90e3386d06e33edcf391e6&ref=rw-share
4 Harri Vartianen
https://www.facebook.com/groups/TuVRa
7 dikaispermaila/821887051262386/
0

70 Prosthetic leg with sense of touch
http://europa.newseoworld.com/worlds-first-feeling-
prosthetic-leg-revealed-328387
4 Lassi Valkama
https://www.facebook.com/groups/TuVRa
7 dikaispermaila/791136181039990/
0

70 Robotic leg prostheses
http://www.ted.com/talks/hugh_herr_the_new_bio-
ics_that_let_us_run_climb_and_dance
7 Haract Zentek
https://www.facebook.com/groups/TuVRa
7 dikaispermaila/658393423369359/
0

70 Robotic led prosthesis
http://bit.ly/1FMRFat
7 Merja Jauhiainen
https://www.facebook.com/groups/TuVRa
7 dikaispermaila/657036804413929/
0

70 Soft exoskeleton
http://bit.ly/1FMRFat
4 Merja Jauhiainen
https://www.facebook.com/groups/TuVRa
7 dikaispermaila/65348593335684/
0

70 Robotic leg prostheses
http://edition.cn/2014/08/20/tech/innovation/
the-chairless-chair/index.html
7 Jari Kotola
https://www.facebook.com/groups/TuVRa
7 dikaispermaila/63342023400074/
0

70 Exoskeleton chair
http://bit.ly/1FMRFat
4 Peikko Vehviläinen
https://www.facebook.com/groups/TuVRa
7 dikaispermaila/619589114940646/
0

70 Exoskeleton for lifting (Korea)
http://bit.ly/1FMRFat
4 Aleksi Rossi
https://www.facebook.com/groups/TuVRa
7 dikaispermaila/61147902336993/
0

70 Robotic leg prostheses
http://www.youtube.com/watch?v=CDsNZJTWw0w
7 Peikko Vehviläinen
https://www.facebook.com/groups/TuVRa
7 dikaispermaila/58811486103130/
0

70 Gait assistant from Honda
http://www.youtube.com/watch?v=SL5Qs7MRHA
4 Risto Linturi
https://www.facebook.com/groups/TuVRa
7 dikaispermaila/53670867311390/
0

70 Robotic legs
http://gridmodo.com/wheelchair-bound-woman-
walks-again-with-a-3d-printed-es-1382719886
7 Jari Kotola
https://www.facebook.com/groups/TuVRa
7 dikaispermaila/53643547434001/
0

70 Robotic legs and exoskeleton that reinforces movement
https://www.facebook.com/2014 Report by the Committee for the Future
4 for the Future
4

70 Augmented human – prosthesis summary
http://www.facebook.com/futurism/videos/22539
1681925877?ref=stream
7 Peikko Neva
https://www.facebook.com/groups/TuVRa
7 dikaispermaila/86939284430812/
0

70 Honda reinauts a guilt assistant robot at EUR 3500
http://www.japantimes.co.jp/news/2015/07/22/tech/
honda-start-leasing-walking-assistance-
device/
http://www.teknikkontakt.ee/n/37267/ekologialine-
vadistus-nord/good-biostack-ecosystem-in-a-
recycling-box/
7 Risto Linturi
https://www.facebook.com/groups/TuVRa
7 dikaispermaila/887869079933666/
0

71 Electricity-'eating' bacterium
http://www.technorati.com/articles/20140930-
140324/mit-researchers-develop-living-material-
using-e-coli.html
7 Petja Jäppinen
https://www.facebook.com/groups/TuVRa
7 dikaispermaila/70931539784878/
0

71 Electromagnetic-‘eating’ bacteria
http://www.rivistaonline.com/articles/20140904-
140324/mit-researchers-develop-living-material-
using-e-coli.html
7 Risto Linturi
https://www.facebook.com/groups/TuVRa
7 dikaispermaila/54289119361903/
0

71 Synthetic yeast propagates
cellically modified organisms as producers of multi-use materials
http://www.tcb.com/news/science-environment-
3676844
7 Risto Linturi
https://www.facebook.com/groups/TuVRa
7 dikaispermaila/54348733353545/
0

71 Crispr-Cas9 for faster
tissue generation
http://phys.org/news/2016-01-crisp-cas9-tool-
to-boost-biotech-procedures.html
7 Leo Kärkkäinen
https://www.facebook.com/groups/TuVRa
7 dikaispermaila/88795747088499/
0

71 Self-luminous seeding plant
http://www.bitmag.com/3d-printed-plant
grows-better-than-real-plants-while-living-
and-working-as-a-real-plant.html
7 Olli Hietanen
https://www.facebook.com/groups/TuVRa
7 dikaispermaila/50843179244939/
0

72 Circuit speed 245THz
http://www.bitmag.com/quantum-plasmonic
tunneling.html
7 Risto Linturi
https://www.facebook.com/groups/TuVRa
7 dikaispermaila/56011871407379/
0

72 3D circuit structure boosts
efficiency of electronics
http://www.bitmag.com/3d-printed-plant
grows-better-than-real-plants-while-living-
and-working-as-a-real-plant.html
6 Peikko Neva
https://www.facebook.com/groups/TuVRa
7 dikaispermaila/66737593400388/
0
72 Intel 16 billion for massive parallel computing
http://motherboard.vicide.com/read/Intel-bets-167-
 billion-on-the massively-parallel-future
3 Tapio Rinne, Risto Linturi
https://www.facebook.com/groups/TVaRa-
dikaalit/permalink/87519905878950/
72
72 Cooling of quantum computer resolved at Aalto University
http://www.aalto.fi/ffl/current/news/2016-02-01-
002/1
3 Harri Vartiainen
https://www.facebook.com/groups/TVaRa-
dikaalit/permalink/89111851005752/
73
72 Carbon-neutral cement
http://nextbifuture.com/2015/09/carbon-neutral-
cement-manufacturing.html
6 Peikka Neva
https://www.facebook.com/groups/TVaRa-
dikaalit/permalink/834462193338055/
73
72 Porous concrete
https://www.facebook.com/technisider/videos/4190
13082969171?ref=rf
6 Jani Ehiro
https://www.facebook.com/groups/TVaRa-
dikaalit/permalink/833498486767759/
73
72 Emission-free concrete substitute
http://www.pbs.org/newshour/bb/cement-
alternative-absorbs-carbon-dioxide-like-sponge/
6 Tatu Lund
https://www.facebook.com/groups/TVaRa-
dikaalit/75
73 Concrete substitutes in Finland
Development/Mechanical-and-
Mining/GeoMaterials
6 Mikko Mononen
https://www.facebook.com/groups/TVaRa-
dikaalit/permalink/862795240504750/
73
73 New building materials that replace or reinforce concrete
6 2014 Report by the Committee
6 for the Future
3

73 Bacterial curing of bricks at room temperature
http://www.inc.com/kevin-j-ryan/2014-
best-industries-2016-sustainable-building-materials.html
6 Kalle Philajansari
https://www.facebook.com/groups/TVaRa-
dikaalit/permalink/89804512057556/
74
72 Antibacterial surfaces
http://www.eurekalert.org/pub_releases/2015-
11/cos-cott110915.php
Kari Vahtiala
https://www.facebook.com/groups/TVaRa-
dikaalit/permalink/851792474938360/
74
74 Self-cleaning painted surface
http://www.siliconreview.com/innovation/s3a5-
20150110/new-tough-paint-super-water-repellent-
self-cleans-video.htm
Risto Linturi
https://www.facebook.com/groups/TVaRa-
dikaalit/permalink/732464963537779/
74
74 Antibacterial and other dirt-repellent materials and surfaces
6 2014 Report by the Committee
6 for the Future
2
75 Spinning of nanofibres
http://www.eurekalert.org/pub_releases/2015-
06/miot-ung40415.php
Kari Vahtiala
https://www.facebook.com/groups/TVaRa-
dikaalit/permalink/72880930890244/
75
75 Growing laser nanowires
http://www.eurekalert.org/pub_releases/2015-
04/ouw-nm041015.php
Kari Vahtiala
https://www.facebook.com/groups/TVaRa-
dikaalit/permalink/752098271344448/
75
75 Conductive graphene yarn
http://www.pijmag.com/stretchable-graphene-
yarn/32657/
Risto Linturi
https://www.facebook.com/groups/TVaRa-
dikaalit/permalink/588217947962482/
75
75 Carbon nanotube yarn or thread
6 2014 Report by the Committee
6 for the Future
3
75 Extensive review of nano carbon fibres
http://www.sciencedirect.com/science/article/pii/S1
369702115002084
Risto Linturi
https://www.facebook.com/groups/TVaRa-
dikaalit/permalink/89048794401813/
75
75 Graphene fibre conductors
http://phys.org/news/2015-09-layering-technique-
graphene-fiber-strength.html-Go
Peikka Neva
https://www.facebook.com/groups/TVaRa-
dikaalit/permalink/82312477766306/
75
75 Mass production of spider web
http://www.wired.com/2015/06/bolt-thread-spider-
silk/maddesignalab/
Kari Vahtiala
https://www.facebook.com/groups/TVaRa-
dikaalit/permalink/77990644511897/
75
75 Magnetospinning of nanofibres
http://www.eurekalert.org/pub_releases/2015-
06/uuw-nm061515.php
Kari Vahtiala
https://www.facebook.com/groups/TVaRa-
dikaalit/permalink/796931956487489/
75
75 Strong spider web launched in the market
http://spectrum.ieee.org/energywise/energy/energy-
intensive-materials/graphene-filter-offers-a-tenfold-reduction-
in-energy-requirements-for-cleaning-nuclear-waste/
Jarmo Heimo
https://www.facebook.com/groups/TVaRa-
dikaalit/permalink/533534366566267/
75
76 Water purification
http://physics.aps.org/synopsis-
toc/11.105/PhysRevX11.134503
Ville Nikkanen
https://www.facebook.com/groups/TVaRa-
dikaalit/permalink/833157683464856/
76
76 Water purification with graphene
Risto Linturi
https://www.facebook.com/groups/TVaRa-
dikaalit/permalink/521181744666100/
76
76 Energy-efficient separation of salt from water
http://interestingengineering.com/mit-discovers-new-
way-to-separate-salt-from-water/
Tuomas Santakallio
https://www.facebook.com/groups/TVaRa-
dikaalit/permalink/86030934106676/
76
76 Nanocarbons in salt or bacterial removal and other separation techniques based
http://spectrum.ieee.org/nanocarbons/nanocarbons/
materials/graphene-filter-offers-a-tenfold-reduction-
in-energy-requirements-for-cleaning-nuclear-waste/
Kari Vahtiala
https://www.facebook.com/groups/TVaRa-
dikaalit/permalink/87783769000131/
76
76 Graphene filter for nuclear waste
http://www.eurekalert.org/pub_releases/2016-03/nu-
cl-ucl0322016.php
Kari Vahtiala
https://www.facebook.com/groups/TVaRa-
dikaalit/permalink/88744507406840/
76
76 New filtering method for heavy metals
http://www.eurekalert.org/pub_releases/2016-03/nu-
cl-ucl0322016.php
Kari Vahtiala
https://www.facebook.com/groups/TVaRa-
dikaalit/permalink/993629648097565/
76
76 Water desalination using battery technology
http://www.eurekalert.org/pub_releases/2015-
05/ucl-ucl0522015.php
Kari Vahtiala
https://www.facebook.com/groups/TVaRa-
dikaalit/permalink/95263661320908/
76
76 Porous liquid
http://www.eurekalert.org/pub_releases/2015-
11/qqb-qbl11115.php
Kari Vahtiala
https://www.facebook.com/groups/TVaRa-
dikaalit/permalink/761526959131982/
76
76 Mining water purification using electric charge
http://www.nytensile.com/graphene-filter-offers-a-tenfold-reduction-
in-energy-requirements-for-cleaning-nuclear-waste/
Kari Vahtiala
https://www.facebook.com/groups/TVaRa-
dikaalit/permalink/716526959131982/
Ultralight and strong materials
Kari Vahtiala

Frictionless material
Spray-on textiles
Pekka Neva

Strong aluminium foam
Risto Linturi

Cellulose nanofiber and microfiber
2014 Report by the Committee for the Future
2

Small but growing market for nanocellulose
6 Risto Linturi
https://www.facebook.com/groups/TuVRa/permalink/891107121006895/

Materials that levitate on nanolevel
2014 Report by the Committee for the Future
2

Frictionless material
http://www.sciencedaily.com/releases/2015/07/15072119401.htm
6 Tatu Lund
https://www.facebook.com/groups/TuVRa/permalink/802371209804878/

Frictionless surface
http://www.itf.org/chemistry/2013/03/grapenews.php
6 Risto Linturi
https://www.facebook.com/groups/TuVRa/permalink/767005366701413/

Acoustic levitation
http://www.technikuus.ru/novosti/2014/04/09/riarenka+shum-sistem
3 Kari Vahtiala
http://www.technikuus.ru/novosti/2014/04/09/khimik++pered+uslyshat+ne+

Aerogel as thermal insulation material
60 Kari Vahtiala, Olli Orkoneva
http://www.technikuus.ru/novosti/2014/04/09/riarenka+shum-sistem
3 Kari Vahtiala
http://www.technikuus.ru/novosti/2014/04/09/khimik++pered+uslyshat+ne+

Strong welded joint
6 Kari Vahtiala
6 Kari Vahtiala
6 Kari Vahtiala

20 km-high tower
6 Peikka Neva
https://www.facebook.com/groups/TuVRa/permalink/811977658568482/

Lightweight metal foams
6 Kari Vahtiala
https://www.facebook.com/groups/TuVRa/permalink/798056205119583/

Floating metal foam
http://www.eurekalert.org/pub_releases/2015-06/ou-cam052115.php
6 Kari Vahtiala
https://www.facebook.com/groups/TuVRa/permalink/766898434396260/

3D printable aerogel
6 Kari Vahtiala
https://www.facebook.com/groups/TuVRa/permalink/797621109561111/

Electrical curing of carbon fibre
6 Kari Vahtiala
https://www.facebook.com/groups/TuVRa/permalink/846445175473900/

Strong aluminium foam
http://www.wired.com/2014/12/aluminum-foam-train/
6 Harri Vartiainen
https://www.facebook.com/groups/TuVRa/permalink/682033219142777/

Light and strong magnesium alloy
6 Kari Vahtiala
https://www.facebook.com/groups/TuVRa/permalink/870543123076086/

Lightweight and strong materials
6 Kari Vahtiala
https://www.facebook.com/groups/TuVRa/permalink/864799060709999/

Ultra-light and strong materials
2014 Report by the Committee for the Future
5

Metallic glue bond
6 Peikka Neva
https://www.facebook.com/groups/TuVRa/permalink/788869851637172/

Strong and light lattice structure through pyrolysis
http://www.nature.com/nmat/journal/v4a/c4mcurren t/full/nmat4561.html
6 Peikka Neva
https://www.facebook.com/groups/TuVRa/permalink/891602900579588/

Titanium strength at 1/10th of the price
http://www.roadandtrack.com/new-cars/car-technology/a24939/new-steel-alloy-titanium/
6 Peikka Neva
https://www.facebook.com/groups/TuVRa/permalink/894544873271791/

Spray-on textiles
2014 Report by the Committee for the Future
6

Roof tile solar panel
8 Tero Puranen
https://www.facebook.com/groups/TuVRa/permalink/818059499783140/

Transparent solar panel
http://www.sciencedaily.com/releases/2015/05/15051109
8 Lasse Lumiaho
https://www.facebook.com/groups/TuVRa/permalink/792316567354248/

Solar power in Finland in 2050
http://www.roadandtrack.com/new-cars/car-technology/a24939/new-steel-alloy-titanium/
8 Risto Linturi
https://www.facebook.com/groups/TuVRa/permalink/751425649794632/
89 Super capacitors made with cellulose http://www.science daily.com/releases/2015/12/1520111337.htm 8 Marko Mikael Tenkanen https://www.facebook.com/groups/TuVRe dikaas/permalink/860521894065418/ 0
89 Rapidly charging light batteries and supercapacitors 2014 Report by the Committee for the Future 4
89 Li battery keeps itself warm in cold weather http://www.gizmag.com/all-climate lithium battery/41423/ 8 Jarmo Martela https://www.facebook.com/groups/TuvR edikaas/permalink/88530458251228/ 0
89 Low-cost battery material http://pubs.acs.org/dei/dei/abs/10.1021/ac500371j 8 Arvo Kukko https://www.facebook.com/groups/TuvR edikaas/permalink/85411352137922/ 0
90 Flux capacitor http://advances.sciencemag.org/content/advances/ 8 Harri Vartiainen https://www.facebook.com/groups/TuvR edikaas/permalink/8490874271527/ 0
90 Profitability of energy storage in the USA http://www.greenenergyworld.com/articles/read/batte ry-storage-pays-back-in-less-than-five-years-sc-finds 8 Harri Vartiainen https://www.facebook.com/groups/TuvR edikaas/permalink/76663703454338/ 0
90 Tesla battery for houses http://thenextweb.com/gadgets/2015/05/01/electric -city/ 8 Sami Niemelä, Ari Lamanihti https://www.facebook.com/groups/TuvR edikaas/permalink/76170518063375/ 0
90 Aluminium battery http://energy.stanford.edu/news/aluSnium-battery- stanford offers safe alternative-conventional batteries 8 Harri Vartiainen https://www.facebook.com/groups/TuvR edikaas/permalink/7484506631724/ 0
90 EOS Aurora $160/KWh http://cleantechnica.com/2013/02/27/energy-storage-auring-battery-system-commercially-available-2016-160kWh/ 8 Risto Linturi https://www.facebook.com/groups/TuvR edikaas/permalink/7128955503140/ 0
90 Flow battery http://geo.ece.illinois.edu/content/1619/s1417171/full?sid=44 bedd7a8.8df-4669-9a25-59fc4278728 8 Toke Lahti https://www.facebook.com/groups/TuvR edikaas/permalink/6526625127551/ 0
90 Undersea energy storage http://dspace.mit.edu/handle/1721.1/8994 8 Risto Linturi https://www.facebook.com/groups/TuvR edikaas/permalink/642050828289/ 0
90 Massive storage of energy in high capacity batteries 2014 Report by the Committee for the Future 4
90 Costs of energy storage down by 70% by 2030 http://www.worldenergy.org/publications/2016/5-storage-shifting-from-cost-to-value/ 8 Peikka Neva https://www.facebook.com/groups/TuvR edikaas/permalink/88811727300480/ 0
91 Heat capture AHOOD http://koti1.tiss.fi/zetka/aktiivisuus-nappale -lithium-ion-talken 8 Martti Kallinen https://www.facebook.com/groups/TuvR edikaas/permalink/8557966710884/ 0
91 Storage of solar heat, phase change
http://www.google.com/patents/US8281804
Esa Turunen
https://www.facebook.com/groups/TuVRA
 dikaita/permalink/751508616291898/0

91 Passive radiator for cooling
Kari Vahitaula
https://www.facebook.com/groups/TuVRA
 dikaita/permalink/72812147303948/0

91 IBM 80% solar energy collector
Risto Lunturi
https://www.facebook.com/groups/TuVRA
 dikaita/permalink/641765135941096/0

91 Geothermal heat from depths (ST1)
http://www.facebook.com/st1suomi/videos/112283
17845945121076/2
Tero Kauppinen
https://www.facebook.com/groups/TuVRA
 dikaita/permalink/86690205094065/0

91 Solisi energy storage
http://www.solisi.com/index.cfm?houa=176
Jyri Jaakkola
https://www.facebook.com/groups/TuVRA
 dikaita/permalink/85993050412455/0

91 Solar heat and long term storage of heat
4
Harri Vartiainen
https://www.facebook.com/groups/TuVRA
 dikaita/permalink/67545832517176/0

91 Geothermal power plant in Espoo
http://yle.fi/uutiset/7825714
3
Lestia jaakkola
https://www.facebook.com/groups/TuVRA
 dikaita/permalink/7096326248716/0

91 Inexpensive storage of hydrogen in nanostuctures
4
Harri Vartiainen
https://www.facebook.com/groups/TuVRA
 dikaita/permalink/74464339304631/0

91 Storage of hydrogen in benzene using solar energy
Risto Lunturi
https://www.facebook.com/groups/TuVRA
 dikaita/permalink/89163694720901/0

92 Transportation of hydrogen (in cans)
4
Harri Vartiainen
https://www.facebook.com/groups/TuVRA
 dikaita/permalink/60408969970840/0

92 Wireless electricity transmission
Risto Lunturi
https://www.facebook.com/groups/TuVRA
 dikaita/permalink/502991693351775/0

92 Wireless charging of cars
http://wetricity.com/
Risto Lunturi
https://www.facebook.com/groups/TuVRA
 dikaita/permalink/74464339304631/0

92 Wireless charging 10 m
Kari Vahitaula
https://www.facebook.com/groups/TuVRA
 dikaita/permalink/449089501875328/0

93 Wireless electricity transmission (magnetism) for electric cars and other vehicles
Kari Vahitaula
https://www.facebook.com/groups/TuVRA
 dikaita/permalink/877611608981111/0

93 Cota wireless charging 10 m + other links
Risto Lunturi
https://www.facebook.com/groups/TuVRA
 dikaita/permalink/891703020947506/0

93 Wireless charging by infrared laser
http://www.viitais.com/magneettisivut/tuuva_07/drome-dead-ray-device-itively-audi/EMP-havt-_technology_k-gadget/
Kari Vahitaula
https://www.facebook.com/groups/TuVRA
 dikaita/permalink/89746657635732/0

94 Anti-UAV
http://petapixel.com/2015/07/31/anti-drone- systems-are-starting-to-take-off--more-173279
Mikko Pirttimaa
https://www.facebook.com/groups/TuVRA
 dikaita/permalink/80241693883334/0

94 Antidrone weapons
Hannu Kokko
https://www.facebook.com/groups/TuVRA
 dikaita/permalink/730755473713728/0

94 Laser weapon stops car
Risto Lunturi
https://www.facebook.com/groups/TuVRA
 dikaita/permalink/750991693351775/0

94 Bofors HMP directed energy weapon
http://www.mittermaching.com/2014/03/todays- directed-energy-weapons-meeting.html
Harri Vartiainen
https://www.facebook.com/groups/TuVRA
 dikaita/permalink/74464339304631/0

94 UAV combadding
http://yle.fi/uutiset/7835746
Pekko Vehvilainen
https://www.facebook.com/groups/TuVRA
 dikaita/permalink/83746557635732/0

94 Laser weapon in use (USA)
http://www.nasa.gov/irland/technology/avionics/ armeljan-ettu-kaytoon-1-laserseen-047-eu- lukutus
Pekko Vehvilainen
https://www.facebook.com/groups/TuVRA
 dikaita/permalink/683486403093375/0

94 US Navy development projects for maintenance issues, wireless power transfer, laser weapons
Pekko Vehvilainen
https://www.facebook.com/groups/TuVRA
 dikaita/permalink/644565453125331/0

94 EMP cannon
http://www.viitais.com/magneettisivut/tuuva_07/drome-dead-ray-device-itively-audi/EMP-havt-_technology_k-gadget/
Jani Ehro
https://www.facebook.com/groups/TuVRA
 dikaita/permalink/783575857424440/0

95 Nanoradio
Kari Vahitaula
https://www.facebook.com/groups/TuVRA
 dikaita/permalink/899399340507973/0

95 Injectable-size intrabody radio transmitter
Kari Vahitaula
https://www.facebook.com/groups/TuVRA
 dikaita/permalink/899399340507973/0

95 LIFI 100Gbit/s
Kari Vahitaula
https://www.facebook.com/groups/TuVRA
 dikaita/permalink/74956874949544/0

96 LIFI achieves 224-Gbps data transmission speed
Kari Vahitaula
https://www.facebook.com/groups/TuVRA
 dikaita/permalink/722919670825718/0
96. **LiFi identification, etc.**
 - 1. Karl Vahtiala
 - https://www.facebook.com/groups/TuVRa/diakaisit/permalink/720944504689825/

96. **LED ‘radio’**
 - http://www.kurzweilai.net/nasa-engineers-to-build-first-integrated-photronics-modem
 - 2014 Report by the Committee
 - 1. for the Future

96. **Photonics modem (NASA)**
 - http://www.kurzweilai.net/nasa-engineers-to-build-first-integrated-photronics-modem
 - 1. Tapio Rinne
 - https://www.facebook.com/groups/TuVRa/diakaisit/permalink/893773807406893/

97. **Doubling of speed on the radio path**
 - 2014 Report by the Committee
 - 1. Karl Vahtiala
 - https://www.facebook.com/groups/TuVRa/diakaisit/permalink/673773250736155/

97. **Transmission speed 1 Tb/s**
 - 3. Risto Linturi
 - https://www.facebook.com/groups/TuVRa/diakaisit/permalink/560118714105779/

97. **Discussion of vortex beam**
 - wireless transmission 2.5 terabytes per second (vortex beam)
 - 1. Arvo Kuuko, Ossi Pöllänen
 - https://www.facebook.com/groups/TuVRa/diakaisit/permalink/536384249812519/

97. **Vortex beam and quantum entanglement**
 - 1. Karl Vahtiala
 - https://www.facebook.com/groups/TuVRa/diakaisit/permalink/874361776047636/

98. **Multi-channel communication and software-based controlling of information**
 - http://www.nyt.no/tiede/article/14395209977?jako=65a73933600.ece
 - 2014 Report by the Committee
 - 1. for the Future

99. **Paypal/Bitcoin during the euro crisis**
 - 9. Risto Linturi
 - https://www.facebook.com/groups/TuVRa/diakaisit/permalink/794907720426836/

99. **Subcutaneous Bitcoin wallet**
 - 1. Pelko Vehtiläinen
 - https://www.facebook.com/groups/TuVRa/diakaisit/permalink/725867407530868/

99. **Bitcoin via radio**
 - http://kryptoradio.koodilehti.fi/
 - 9. Harri Vartiainen
 - https://www.facebook.com/groups/TuVRa/diakaisit/permalink/598872840303326/

99. **Electronic money, time banks**
 - http://nsn.com/file/28771/nsn-5g-white-paper
 - 1. Aki Airomaa, Mari Heimala
 - https://www.facebook.com/groups/TuVRa/diakaisit/permalink/504528856315592/

99. **Blockchain money for Tunisia’s crisis**
 - 9. Risto Linturi
 - https://www.facebook.com/groups/TuVRa/diakaisit/permalink/874242432693364/

99. **Bitcoin critics**
 - 10. Timo Ali-Vehmas
 - https://www.facebook.com/groups/TuVRa/diakaisit/permalink/848431404979696/

100. **Car-to-car communication**
 - 1. Risto Linturi
 - https://www.facebook.com/groups/TuVRa/diakaisit/permalink/68175527068349/

100. **Internet for robots**
 - 1. Alii Arjomaa, Marii Heimali
 - https://www.facebook.com/groups/TuVRa/diakaisit/permalink/504528856315592/

100. **Internet for robots**
 - http://www.nyt.no/tiede/article/14395209977?jako=65a73933600.ece
 - 10. Antti-Pekka Puonti
 - https://www.facebook.com/groups/TuVRa/diakaisit/permalink/691648474286095/

100. **5G, IoT situation in 2016**
 - http://www.questionspace.com/article/technology/green-news-technology-google-project-skybender-5g-
 - internet-plane/
 - 10. Risto Linturi
 - https://www.facebook.com/groups/TuVRa/diakaisit/permalink/890377230838684/

100. **5G networks**
 - 10. Karl Vahtiala
 - https://www.facebook.com/groups/TuVRa/diakaisit/permalink/643817173501010/

100. **5G networks**
 - https://www.facebook.com/groups/TuVRa/diakaisit/permalink/643817173501010/
 - 10. Antti-Pekka Puonti
 - https://www.facebook.com/groups/TuVRa/diakaisit/permalink/691648474286095/

100. **Nokia 5G White-Paper**
 - http://nsn.com/file/28771/nsn-5g-white-paper/download
 - 10. Ossi Pöllänen
 - https://www.facebook.com/groups/TuVRa/diakaisit/permalink/538069426813666/

101. **LED cultivation (Philips)**
 - 10. Risto Linturi
 - https://www.facebook.com/groups/TuVRa/diakaisit/permalink/890377230838684/

101. **Lighting and milk production**
 - http://www.nyt.no/tiede/article/14395209977?jako=65a73933600.ece
 - 7. Joulu Valkonen
 - https://www.facebook.com/groups/TuVRa/diakaisit/permalink/833994750114498/

101. **LED cultivation in Finland**
 - http://www.silmusalaatti.fi/viljely/
 - 7. Risto Linturi
 - https://www.facebook.com/groups/TuVRa/diakaisit/permalink/920599908200167/

101. **LED cultivation at Silmusalaatti**
 - http://www.finc phát-14395209977?jako=65a73933600.ece
 - 7. Harri Vartiainen
 - https://www.facebook.com/groups/TuVRa/diakaisit/permalink/831200955646717/

101. **Vertical cultivation**
 - http://nsn.com/file/28771/nsn-5g-white-paper/download
 - 7. Karl Vahtiala
 - https://www.facebook.com/groups/TuVRa/diakaisit/permalink/77941858121733/

101. **Grasshoppers grown in containers**
 - http://www.kuopaaglehtti.ukuliset/tama-kukinon-
 - rökkaisa-nalanhanan-maalinta/135278/8
 - 7. Karl Vahtiala
 - https://www.facebook.com/groups/TuVRa/diakaisit/permalink/77941858121733/
Indoor cultivation, hemp
7 Petja Jäppinen
https://www.facebook.com/groups/TuViRa
 dikaisa/permalink/756334554848153/ 0

Urban/multilayer cultivation
http://weburbanist.com/2015/04/02/plantlab-urban
 farms-40-times-more-productive-than-open-fields/
https://phys.org/news/2015-10-microorganisms-sea-
waste-farms-40-times-more-productive-than-open-field
s.html
7 Harri Vartiainen
https://www.facebook.com/groups/TuViRa
 dikaisa/permalink/746730465444562/ 0

LED multi-layer cultivation
(Japan)
http://weburbanist.com/2015/04/02/plantlab-urban
farms-40-times-more-productive-than-open-fields/
https://phys.org/news/2015-10-microorganisms-sea-
waste-farms-40-times-more-productive-than-open-field
s.html
7 Petja Jäppinen
https://www.facebook.com/groups/TuViRa
 dikaisa/permalink/703617016422774/ 0

Kitchen cultivation product
http://www.youtube.com/watch?v=2nFQOkzEjxQ
7 Risto Linturi
https://www.facebook.com/groups/TuViRa
 dikaisa/permalink/506694762755968/ 0

Vertical cultivation
http://www.youtube.com/watch?v=2nFQOkzEjxQ
7 Antti Kiviivalli
https://www.facebook.com/groups/TuViRa
 dikaisa/permalink/506694762755968/ 0

Preliminary investigation – new
4

Commercialised container cultivation,
EUR 20,000/year
https://www.facebook.com/HuffingtonPost/videos/1
0153939374106130/
7 Aleksi Rossi
https://www.facebook.com/groups/TuViRa
 dikaisa/permalink/880533154456906/ 0

Critical (incompletely) view to vertical
cultivation
http://dbifrum.uee.org/computer/ezreesees-
systems/mits-computer-the-future-of-urban
agriculture
7 Risto Linturi
https://www.facebook.com/groups/TuViRa
 dikaisa/permalink/875599375891003/ 0

MIT invests in LED/vertical
cultivation
http://www.youtube.com/watch?v=2nFQOkzEjxQ
7 Risto Linturi
https://www.facebook.com/groups/TuViRa
 dikaisa/permalink/880548282794311/ 0

Product of LED/container
cultivation
https://www.facebook.com/HuffingtonPost/videos/1
0153939374106130/
7 Aleksi Rossi
https://www.facebook.com/groups/TuViRa
 dikaisa/permalink/880533154456906/ 0

Sugar fuel cell
https://www.facebook.com/download/301578798184
7995/90120161153894092389550.pdf
8 Tuomas Santakallio
https://www.facebook.com/groups/TuViRa
 dikaisa/permalink/885849661199306/ 0

Electricity from methane
http://phys.org/news/2015-10-microorganisms-sea-
power-nanowire-cables.html
8 Pekka Neva
https://www.facebook.com/groups/TuViRa
 dikaisa/permalink/84369742414932/ 0

Microbial fuel cell
https://en.wikipedia.org/wiki/Microbial_fuel_cell
7 Pekka Vehviläinen
https://www.facebook.com/groups/TuViRa
 dikaisa/permalink/732807203053555/ 0

Fuel cell review
http://www.iea.org/publications/repub/tech-
calification/TechnologyRoadmapHydrogenandFuelCell
s.pdf
8 Pekka Neva
https://www.facebook.com/groups/TuViRa
 dikaisa/permalink/832620900087272/ 0

Fuel cells 95% 5k!
http://spectrum.iee.org/energywzyoo/green-technology/nu-
ergy-claims-fuel-cell-breakthrough-starts-global
production
7 Risto Linturi
https://www.facebook.com/groups/TuViRa
 dikaisa/permalink/815774957208487/ 0

Small fuel cells
http://www.redospowerysystems.com/products/
8 Pekka Vehviläinen
https://www.facebook.com/groups/TuViRa
 dikaisa/permalink/709051625603626/ 0

Toyota gives away fuel cell patents
https://www.peekwire.com/2015/toyota-gives-async-
patents-build-game-changing-car-future/
8 Kalle Vanvikko
https://www.facebook.com/groups/TuViRa
 dikaisa/permalink/70910569065032/ 0

5,000 fuel cell patents made available (Toyota)
https://www.peekwire.com/2015/toyota-gives-async-
patents-build-game-changing-car-future/
8 Harri Vartiainen
https://www.facebook.com/groups/TuViRa
 dikaisa/permalink/70644414719984/ 0

Fuel cell (commercial)
http://www.powercell.se/products/fuel-cell/
8 Pekka Neva
https://www.facebook.com/groups/TuViRa
 dikaisa/permalink/81655255328348/ 0

Inexpensive small fuel cell
8 Preliminary investigation – new
4

Nickel to replace platinum in fuel cells
http://www.eurekalert.org/pub_releases/2015-
01/cod-443150.php
8 Kalle Vahitila
https://www.facebook.com/groups/TuViRa
 dikaisa/permalink/88308521806960/ 0

Over 80% efficiency in household fuel cell
http://www.eurekalert.org/pub_releases/2015-
01/cod-443150.php
8 Kalle Vahitila
https://www.facebook.com/groups/TuViRa
 dikaisa/permalink/88308521806960/ 0

Tesla 800 km on a single charge
http://nextbtfuture.com/2015/09/tesla-model-s-
drives-455-miles-on.html
4 Pekka Neva
https://www.facebook.com/groups/TuViRa
 dikaisa/permalink/821149932494243/ 0

Rolling friction into energy
http://www.eurekalert.org/pub_releases/2015-
06/uow-nmk90915.php
4 Kalle Vahitila
http://www.eurekalert.org/pub_releases/2015-
06/uow-nmk90915.php
0

Airless tyre (Michelin)
http://www.kausapaljet.fi/tietotu/michelin-zavasi-
tammiaamilankaden-tehtaan/20141179984
4 Arvo Kukko
https://www.facebook.com/groups/TuViRa
 dikaisa/permalink/67326944437818/ 0

Compressed air car ARPod
http://themandunleashed.com/2014/05/1000-car-
runs-on-air
4 Jarmo Heimo
https://www.facebook.com/groups/TuViRa
 dikaisa/permalink/64815685363779/ 0

Compressed air/gas hybrid car
http://www.engadget.com/2014/10/03/citroen-
arborinorlimente.html
4 Fama Dumbouya
https://www.facebook.com/groups/TuViRa
 dikaisa/permalink/64582853232424/ 0

Trolley truck in Sweden, electric car
http://www.eurekalert.org/pub_releases/2015-
06/uow-nmk90915.php
4 Risto Linturi
https://www.facebook.com/groups/TuViRa
 dikaisa/permalink/863060017414939/ 0

New power sources for vehicles
8 Preliminary investigation – new
5

Plug-in hybrid ship
http://cleantechnica.com/2015/10/26/canada-plans-
to-construct-a-fleet-of-plug-in-hybrid-ships/
4 Pekka Neva
https://www.facebook.com/groups/TuViRa
 dikaisa/permalink/845567945360813/ 0
104	SeaOrbiter funded	http://www.yumibusiness.com/	4	Eetu Simpanen	https://www.facebook.com/groups/TuVa-dikaelta/permalink/112793608838270/
104	Radial development of water-borne traffic	Preliminary investigation – new	4	Kari Vahtiala	2
105	Driverless electric cars to reduce CO2 emissions by 90%	http://www.popsci.com/green-argument-driverless-cars	4	Risto Linturi	https://www.facebook.com/groups/TuVa-dikaelta/permalink/793178540741763/
105	CO2 capture	http://www.nature.com/nature/journal/v519/n7543/full/nature14327.html	8	Kari Vahitila	https://www.facebook.com/groups/TuVa-dikaelta/permalink/739443022893973/
105	Review of energy technologies News of hydrogen and graphite from methane	http://www.nature.com/nature/journal/v519/n7543/full/nature14327.html	8	Harri Vartiainen	https://www.facebook.com/groups/TuVa-dikaelta/permalink/62027646830000/
105	Review of energy technologies News of hydrogen and graphite from methane	https://www.facebook.com/groups/TuVRa	8	Arvo Kukko	https://www.facebook.com/groups/TuVa-dikaelta/permalink/58511359484691/
105	Renewables provide 95% of energy in Uruguay	https://youtu.be/5uS5H4e4tRM	8	Pekka Neva	https://www.facebook.com/groups/TuVa-dikaelta/permalink/862750500262673/

32
107 Trash collector robot
Jouni Laveri
4
https://www.facebook.com/groups/TuRa-dikaalit/permalink/828896693894605/
0

107 Self-assembling robot
Jon Sundell
5
https://www.facebook.com/groups/TuRa-dikaalit/permalink/774392649345010/
0

107 Robotic parking
https://www.facebook.com/bintjbell/video/849623874379974/Ref/nf
Kari Vahtiala
5
https://www.facebook.com/groups/TuRa-dikaalit/permalink/75420971363303/0

107 Robotic cook 2017
Peikko Vehlätäinen
5
https://www.facebook.com/groups/TuRa-dikaalit/permalink/75265704815838/
0

107 Roof trusses made by robots
http://www.trussmatic.fi/
Kari Vahtiala
5
https://www.facebook.com/groups/TuRa-dikaalit/permalink/73659796548029/
0

107 Ubique environment (IOT)
Juha Paronen
5
https://www.facebook.com/groups/TuRa-dikaalit/permalink/68865391251070/
0

107 Co-operation between humans and robots
Tatu Lund
5
https://www.facebook.com/groups/TuRa-dikaalit/permalink/62176587441551/
0

107 Robotic manufacturing/service
Risto Linturi
5
https://www.facebook.com/groups/TuRa-dikaalit/permalink/87451391323742/
0

107 MIT review of the state of robotics in 2015
Risto Linturi
5
https://www.facebook.com/groups/TuRa-dikaalit/permalink/87451391323742/
0

107 Self-repair techniques for robots
http://sci-tech.if.org/magazine/2015/7/19/418-self-repair-techniques-point-to-robots-that-design-themselves/fheust
Peikko Ketola
5
https://www.facebook.com/groups/TuRa-dikaalit/permalink/90710329407074/
0

107 Inexpensive IOT controller
https://www.olixm.com/Products/loT/ESP8266-EVB/open-source-hardware
Kate Ahlola
5
https://www.facebook.com/groups/TuRa-dikaalit/permalink/72334044740028/
0

107 Street lighting on demand
http://www.44x10x4x.com/metrop/alevitakset
Haract Zentec
5
https://www.facebook.com/groups/TuRa-dikaalit/permalink/68027539981327/
0

107 IOT – the big picture
Marti Pyykkinen
5
https://www.facebook.com/groups/TuRa-dikaalit/permalink/63971743282342/
0

108 NFC-based user interface (IOT)
http://vimeo.com/96316406
Marti Pyykkinen
5
https://www.facebook.com/groups/TuRa-dikaalit/permalink/639712164568/
0

108 IOT development
Ilkka Kakko
5
https://www.facebook.com/groups/TuRa-dikaalit/permalink/504216893092955/
0

108 Ubique environment (IOT)
http://vimeo.com/96316406
Marti Pyykkinen
5
https://www.facebook.com/groups/TuRa-dikaalit/permalink/639712164568/
0

109 Paper surface with artificial sensory functions
http://spectrum.ieee.org/research/talk/biomedical/devices/paper-skin-mines-the-real-th ing
Kari Vahtiala
5
https://www.facebook.com/groups/TuRa-dikaalit/permalink/90930900242114/
0

109 Less expensive graphene production
Kari Vahtiala
5
https://www.facebook.com/groups/TuRa-dikaalit/permalink/85168933164817/
0

109 AMI’s graphene production to reach 1,000 tons in 2016
Kari Vahtiala
5
https://www.facebook.com/groups/TuRa-dikaalit/permalink/85168933164817/
0

109 CNT, Graphene & optical transistors
Kari Vahtiala
5
https://www.facebook.com/groups/TuRa-dikaalit/permalink/82030324874170/
0

109 Energy-efficiency of graphene production
http://www.44x10x4x.com/metrop/alevitakset
Risto Linturi
5
https://www.facebook.com/groups/TuRa-dikaalit/permalink/73988813279463/
0

109 Price of flawless graphene crystal falls
http://nextbigfuture.com/2015/01/price-of-flawless-graphene-will-be.html
Risto Linturi
5
https://www.facebook.com/groups/TuRa-dikaalit/permalink/71108452836430/
0

109 Very affordable graphene
http://delta.tudelft.nl/article/making-graphene-affordable/29177
Harii Vartiainen
6
https://www.facebook.com/groups/TuRa-dikaalit/permalink/710065151169093/
0

109 UG graphene
http://spectrum.ieee.org/nanoscienceandconductivity/nanotechnology/graphenebasedsupercapacitorsenablewearable-electronics
Kari Vahtiala
5
https://www.facebook.com/groups/TuRa-dikaalit/permalink/7071574327528/
0

109 Several news about graphene
Risto Linturi
6
https://www.facebook.com/groups/TuRa-dikaalit/permalink/68740390177460/
0

109 Graphene improves thermal conductivity of PET plastic
http://www.44x10x4x.com/metrop/alevitakset
Risto Linturi
5
https://www.facebook.com/groups/TuRa-dikaalit/permalink/69503520839324/
0

109 Faultless graphene surfaces for displays from Samsung
Risto Linturi
5
https://www.facebook.com/groups/TuRa-dikaalit/permalink/54617733210704/
0

109 Graphene production in China
http://english.eastday.com/e/131226/u1a7852709.html
Risto Linturi
6
https://www.facebook.com/groups/TuRa-dikaalit/permalink/493924054058539/
0

109 Graphene production on sodium glass for electronic applications
Risto Linturi
6
https://www.facebook.com/groups/TuRa-dikaalit/permalink/895272535638215/
0

110 Local grid
Pekka Neva
8
https://www.facebook.com/groups/TuRa-dikaalit/permalink/842655048532458/
0

33
110 Off Grid housing – Ecocapsule
http://www.huffingtonpost.com/2015/05/26/tiny-house_n_7443744.html
8 Peikko Vehläläinen
https://www.facebook.com/groups/TuVRa/diaalkit/permalink/775637509220524/ 0

110 Off Grid solutions
8 Preliminary investigation – new
3

110 P2P electricity trading
9 Peikko Neva
https://www.facebook.com/groups/TuVRa/diaalkit/permalink/873995032718104/ 0

111 MyData in government platform
http://fl.okfn.org/2015/05/29/mydata-mukana-strategissassa-haalitusohjelmaa/
9 Pia Erkinheimo
https://www.facebook.com/groups/TuVRa/diaalkit/permalink/776489205802021/ 0

111 MyData
http://www.hs.fi/paakko/rcsetukset/14204588629687_http://6.91b0e0fe85e7f6e0005e57c1b5b6d71a
9 Risto Linturi
https://www.facebook.com/groups/TuVRa/diaalkit/permalink/58255635195280/ 0

111 Ecosystem of traffic data
9 Risto Linturi
https://www.facebook.com/groups/TuVRa/diaalkit/permalink/580563142061296/ 0

111 MyData
9 Preliminary investigation – new
2

111 MyData’s value for the national economy
9 Ossi Kuitinen
https://www.facebook.com/groups/TuVRa/diaalkit/permalink/882444951873112/ 0

112 Bitcoin/Blockchain impacts
9 Harri Vartainen
https://www.facebook.com/groups/TuVRa/diaalkit/permalink/593093860808224/ 0

112 Blockchain development opportunities
https://www.youtube.com/watch?v=Pu4PAMFp0SY
9 Aleksi Rossi
https://www.facebook.com/groups/TuVRa/diaalkit/permalink/55189214498689/ 0

112 Blockchain and other p2p solutions
9 Risto Linturi
https://www.facebook.com/groups/TuVRa/diaalkit/permalink/89311473413746/ 0

112 Blockchain-based structures of trust, several links
9 Veijo Tikka
https://www.facebook.com/groups/TuVRa/diaalkit/permalink/893114734137467/ 0

112 Blockchain applications, several links
http://www.blockchaintechnologies.com/blockchain-applications
10 Risto Linturi
https://www.facebook.com/groups/TuVRa/diaalkit/permalink/893114734137467/ 0

112 Financial news robot
2 Tatu Lund
https://www.facebook.com/groups/TuVRa/diaalkit/permalink/712311198886479/ 0

112 Chat bots
http://www.bbc.com/future/story/20140909-hoever-online-bots-are-tricking-you
2 Tatu Lund
https://www.facebook.com/groups/TuVRa/diaalkit/permalink/58550008390395/ 0

113 Robot writing news for LA Times
2 Ikka Kakko
https://www.facebook.com/groups/TuVRa/diaalkit/permalink/538487421395493/ 0

113 Digital helper that understands speech
http://time.com/4026069/amazon-echo-new-features-2016/
2 Risto Linturi
https://www.facebook.com/groups/TuVRa/diaalkit/permalink/893876978005064/ 0

113 Virtual character relieves depression
http://www.tat.eu/artikel/jutiset/majennus-levee-virtualahhmon-xoja
2 Krista Lagari, Karl Alanne
https://www.facebook.com/groups/TuVRa/diaalkit/permalink/893876978005060/ 0

113 MS Verbot experiment in China
http://uk.businessinsider.com/microsoft-ai-xiaoice-turing-test-in-china-2016-1
2 Risto Linturi
https://www.facebook.com/groups/TuVRa/diaalkit/permalink/89479408415332/ 0

150 Faster vaccine manufacturing
7 Kari Vahtiala
https://www.facebook.com/groups/TuVRa/diaalkit/permalink/86448667882177/ 0

150 Electrical stimulation replaces antibiotics
7 Kari Vahtiala
https://www.facebook.com/groups/TuVRa/diaalkit/permalink/85137774897824/ 0

150 Health effects of spruce resin
http://www.suomintiedekorkeusero-sivut/aarjo
7 Kari Vahtiala
https://www.facebook.com/groups/TuVRa/diaalkit/permalink/7593257183850/ 0

150 Graphene with anticancer potential
http://www.medicalnewstoday.com/articles/289978.php
7 Risto Linturi
https://www.facebook.com/groups/TuVRa/diaalkit/permalink/736413418862/ 0

150 UV LED for disinfection
http://www.vapoorsanomat.fi/tristis/puskero-sudat-siivastajallisen
7 Ville Vähämäki
https://www.facebook.com/groups/TuVRa/diaalkit/permalink/701356734313457/ 0

150 Antibiotic that works on MRSA
7 Risto Linturi
https://www.facebook.com/groups/TuVRa/diaalkit/permalink/701488149096457/ 0

150 Getting bacteria under control with liposomes
http://www.tehnoo.com/virve/virve.taasajaja-antibiotiinien-ajoilla
7 Antti Talonen
https://www.facebook.com/groups/TuVRa/diaalkit/permalink/668704689153207/ 0

150 Human Protein Atlas
7 Risto Linturi
https://www.facebook.com/groups/TuVRa/diaalkit/permalink/664056107461341/ 0

150 Map of human proteins
7 Jarmo Heimo
https://www.facebook.com/groups/TuVRa/diaalkit/permalink/574071402751407/ 0

150 Cooling of trauma patients (hibernation)
http://q09.com/humanity-is-now-offically-ready-for-suspended-animation-15117775747
7 Lassi Valkama
https://www.facebook.com/groups/TuVRa/diaalkit/permalink/572779128400419/ 0

150 Suspended animation to be tested in humans
7 Risto Linturi
https://www.facebook.com/groups/TuVRa/diaalkit/permalink/5443202351077/ 0
150 Malaria vaccine tested in mice
http://news.sciencemag.org/health/2014/05/new-malaria-vaccine-shows-promise-mice
7 Arvo Kukko
https://www.facebook.com/groups/TuVRa/permalink/57262252285385/0

150 Cholesterol vaccine
http://news.unm.edu/news/unm-mih-researchers-develop-vaccine-to-treat-high-cholesterol
7 Peikka Pasanen
https://www.facebook.com/groups/TuVRa/permalink/858794424238165/0

150 Medicine – protein map!
7 Preliminary investigation – new
4

150 Rabbit’s brain frozen without breaking the structure
7 Karl Alanne
https://www.facebook.com/groups/TuVRa/permalink/898893813561595/0

200 Hypersonic passenger plane
4 Peikka Neva
https://www.facebook.com/groups/TuVRa/permalink/85309305086877/0

200 Good discussion on supersonic planes
4 Henri Heinonen
https://www.facebook.com/groups/TuVRa/permalink/87023379415280/0

200 Zeno phenomenon
6 Harri Vartiainen
https://www.facebook.com/groups/TuVRa/permalink/844080385709169/0

200 Energy links NEO2015
http://www.massachusettsvassar.org/yncmp/ncx0/NCX%3Ae6/infra-kohanista-NCX%3A4f/14/souppu-tuoottisan-tiilella
7 Antti Raake
https://www.facebook.com/groups/TuVRa/permalink/82006291441112/0

200 Weyl fermion
6 Karl Alanne
https://www.facebook.com/groups/TuVRa/permalink/804322019684506/0

200 Remote audio sensors, HD phone call
1 Karl Vahtila
https://www.facebook.com/groups/TuVRa/permalink/774168139367463/0

200 ThingData – individual identity of goods
http://www.facebook.com/notes/risto-linturi/tensor/espoo-internet-hankeken-thing-data-hanke-esta-%E8%C4%94%E4%9A%9Bkaitaista-kai-%E4%BB%80-%E4%BD%9C
9 Risto Linturi
https://www.facebook.com/groups/TuVRa/permalink/773349143782694/0

200 Express building
http://www.youtube.com/watch?v=nevvm5mxtX
5 Kari Vahtila
https://www.facebook.com/groups/TuVRa/permalink/732382869379119/0

200 Spherical robot in military tests
4 Peikko Vehviläinen
https://www.facebook.com/groups/TuVRa/permalink/722052241245718/0

200 Data security through quantum entanglement
2 Risto Linturi
https://www.facebook.com/groups/TuVRa/permalink/68490361829914/0

200 Privatisation of health care services in Finland
http://yle.fi/uutiset/terveyspalvelut_yksityistyvat_no
7 Tatu Lund
https://www.facebook.com/groups/TuVRa/permalink/66722516738691/0

200 Encryption with camera cell
http://www.bloomberg.com/company/new-energy-outlook/
2 Peikko Vehviläinen
https://www.facebook.com/groups/TuVRa/permalink/673491396785870/0

200 Hubless wheel
http://www.youtube.com/watch?v=sPvYMPifhaw
4 Arvo Kukko
https://www.facebook.com/groups/TuVRa/permalink/692019536156566/0

200 Virtual windows
http://www.virgin.com/richard-branson/virgin-launches-glass-bottomed-plane
3 Peikko Vehviläinen
https://www.facebook.com/groups/TuVRa/permalink/692019548476028/0

200 DNA programming language
6 Risto Linturi
https://www.facebook.com/groups/TuVRa/permalink/44807890529712/0

200 Miscellaneous
0 Preliminary investigation – new
0

200 Public transport solution on the road
http://www.bloomberg.com/company/new-energy-outlook/
4 Jarmo Kuismanen
https://www.facebook.com/groups/TuVRa/permalink/68881178691656/0

200 GHZ antenna on a chip has been questioned
http://globe.network/ghz-antenna-on-a-chip-is-questioned
1 Karl Vahtila
https://www.facebook.com/groups/TuVRa/permalink/887951164655824/0

200 Waste paper turned into new paper in the office
http://www.facebook.com/notes/risto-linturi/espoo-internet-hankeken-thing-data-hanke-esta-%E8%C4%94%E4%9A%9Bkaitaista-kai-%E4%BB%80-%E4%BD%9C
5 Petja Jäppinen
https://www.facebook.com/groups/TuVRa/permalink/687019954149813/0

200 Quick encryption (MS)
http://www.theregister.co.uk/2016/02/09/researchers-break-homomorphic-encryption/
11 Leo Kärkkäinen
https://www.facebook.com/groups/TuVRa/permalink/695275300906703/0

200 Communication network made of fungi
11 Otto Tiisanen
https://www.facebook.com/groups/TuVRa/permalink/694823906893616/0

200 Passive WiFi (almost without power)
http://www ereukal e r.org/pub_releases/2014-01/ow-woeal2316.php
11 Karl Vahtila
https://www.facebook.com/groups/TuVRa/permalink/9037190707731/0

200 Femtosecond lasers for network analysis
1 Karl Vahtila
https://www.facebook.com/groups/TuVRa/permalink/9538999601341/0

200 Transparent aluminium
http://www.facebook.com/notes/risto-linturi/espoo-internet-hankeken-thing-data-hanke-esta-%E8%C4%94%E4%9A%9Bkaitaista-kai-%E4%BB%80-%E4%BD%9C
6 Petja Jäppinen
https://www.facebook.com/groups/TuVRa/permalink/84934265124181/0

200 Nanoscale optical switch
http://www.facebook.com/notes/risto-linturi/espoo-internet-hankeken-thing-data-hanke-esta-%E8%C4%94%E4%9A%9Bkaitaista-kai-%E4%BB%80-%E4%BD%9C
1 Karl Vahtila
https://www.facebook.com/groups/TuVRa/permalink/86101405030467/0

200 White laser with QDs
1 Karl Vahtila
https://www.facebook.com/groups/TuVRa/permalink/80384713067470/0
600	AI	2	Preliminary investigation – new	5	
600	AI review 2, several links	https://www.facebook.com/note/10151609046812712	2	Karoliina Salminen	https://www.facebook.com/groups/TuVRa dikaalit/permalink/875239122593695/
600	AI review 3, several links	https://www.facebook.com/note/10153080971122712	2	Karoliina Salminen	https://www.facebook.com/groups/TuVRa dikaalit/permalink/87523999260334/
600	Deep vision, AI, Deep Learning examples	https://github.com/zer0n/deepframeworks/blob/master/README.md	2	Kate Alhola	https://www.facebook.com/groups/TuVRa dikaalit/permalink/90556507328623/
700	Significance of design	https://www.facebook.com/NewThisNews/videos/752335415244397/9efefn	9	Olli Hietanen	https://www.facebook.com/groups/TuVRa dikaalit/permalink/89556507328623/
700	Digital art, digital experiences	9	Preliminary investigation – new	3	
700	Robots on stage	http://www.youtube.com/watch?v=EFEztG30y88	10	Petri Sirvö	https://www.facebook.com/groups/TuVRa dikaalit/permalink/89556507328623/
Summary 6 July 2014	http://attachment.fbsbx.com/file_download.php?id=831243640220780&eid=AStPK648AvNI1YFGqQIhNO Dwy504XGDVXp_wJDQiKLlUNxWuTnKKpJDs646cAYf	0	Risto Linturi	https://www.facebook.com/groups/TuVRa dikaalit/permalink/903707446413529/	
List of the dissolution of norms	0	Heikki Tamminen	https://www.facebook.com/groups/TuVRa dikaalit/permalink/903707446413529/		
PRELIMINARY INVESTIGATION OF THE DEVELOPMENT OF RADICAL TECHNOLOGIES AFTER THE 2013 REVIEW